enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Histogram - Wikipedia

    en.wikipedia.org/wiki/Histogram

    The data shown is a random sample of 10,000 points from a normal distribution with a mean of 0 and a standard deviation of 1. The data used to construct a histogram are generated via a function m i that counts the number of observations that fall into each of the disjoint categories (known as bins).

  3. Freedman–Diaconis rule - Wikipedia

    en.wikipedia.org/wiki/Freedman–Diaconis_rule

    where ⁡ is the interquartile range of the data and is the number of observations in the sample . In fact if the normal density is used the factor 2 in front comes out to be ∼ 2.59 {\displaystyle \sim 2.59} , [ 4 ] but 2 is the factor recommended by Freedman and Diaconis.

  4. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    As explained above, while s 2 is an unbiased estimator for the population variance, s is still a biased estimator for the population standard deviation, though markedly less biased than the uncorrected sample standard deviation. This estimator is commonly used and generally known simply as the "sample standard deviation".

  5. Univariate (statistics) - Wikipedia

    en.wikipedia.org/wiki/Univariate_(statistics)

    A simple example of univariate data would be the salaries of workers in industry. [1] ... variance and standard deviation. ... histogram. Histograms are used ...

  6. Statistical dispersion - Wikipedia

    en.wikipedia.org/wiki/Statistical_dispersion

    Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered. On the other hand, when the variance is small, the data in the set is clustered.

  7. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    Every normal distribution is a version of the standard normal distribution, whose domain has been stretched by a factor (the standard deviation) and then translated by (the mean value): f ( x ∣ μ , σ 2 ) = 1 σ φ ( x − μ σ ) . {\displaystyle f(x\mid \mu ,\sigma ^{2})={\frac {1}{\sigma }}\varphi \left({\frac {x-\mu }{\sigma }}\right)\,.}

  8. Statistics - Wikipedia

    en.wikipedia.org/wiki/Statistics

    Two main statistical methods are used in data analysis: descriptive statistics, which summarize data from a sample using indexes such as the mean or standard deviation, and inferential statistics, which draw conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). [4]

  9. Scott's rule - Wikipedia

    en.wikipedia.org/wiki/Scott's_Rule

    where is the standard deviation of the normal distribution and is estimated from the data. With this value of bin width Scott demonstrates that [5] / showing how quickly the histogram approximation approaches the true distribution as the number of samples increases.