enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Necessity and sufficiency - Wikipedia

    en.wikipedia.org/wiki/Necessity_and_sufficiency

    The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "P ⇒ Q" (P implies Q).

  3. Destructive dilemma - Wikipedia

    en.wikipedia.org/wiki/Destructive_dilemma

    It is the inference that, if P implies Q and R implies S and either Q is false or S is false, then either P or R must be false. In sum, if two conditionals are true, but one of their consequents is false, then one of their antecedents has to be false. Destructive dilemma is the disjunctive version of modus tollens.

  4. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    The proposition to be proved is P. We assume P to be false, i.e., we assume ¬P. It is then shown that ¬P implies falsehood. This is typically accomplished by deriving two mutually contradictory assertions, Q and ¬Q, and appealing to the law of noncontradiction. Since assuming P to be false leads to a contradiction, it is concluded that P is ...

  5. Logical truth - Wikipedia

    en.wikipedia.org/wiki/Logical_truth

    Thus, logical truths such as "if p, then p" can be considered tautologies. Logical truths are thought to be the simplest case of statements which are analytically true (or in other words, true by definition). All of philosophical logic can be thought of as providing accounts of the nature of logical truth, as well as logical consequence. [1]

  6. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    P, as an individual or a class, materially implicates Q, but the relation of Q to P is such that the converse proposition "If Q, then P" does not necessarily have sufficient condition. The rule of inference for sufficient condition is modus ponens , which is an argument for conditional implication:

  7. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  8. Modal logic - Wikipedia

    en.wikipedia.org/wiki/Modal_logic

    HP : It has always been the case that P. There are then at least three modal logics that we can develop. For example, we can stipulate that, = P is the case at some time t = P is the case at every time t. Or we can trade these operators to deal only with the future (or past). For example,

  9. AOL latest headlines, entertainment, sports, articles for business, health and world news.