enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ladder operator - Wikipedia

    en.wikipedia.org/wiki/Ladder_operator

    The ladder operators of the quantum harmonic oscillator or the "number representation" of second quantization are just special cases of this fact. Ladder operators then become ubiquitous in quantum mechanics from the angular momentum operator, to coherent states and to discrete magnetic translation operators.

  3. Angular momentum operator - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_operator

    In simpler terms, the total angular momentum operator characterizes how a quantum system is changed when it is rotated. The relationship between angular momentum operators and rotation operators is the same as the relationship between Lie algebras and Lie groups in mathematics, as discussed further below. The different types of rotation ...

  4. Quantum harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Quantum_harmonic_oscillator

    The Hamiltonian of the particle is: ^ = ^ + ^ = ^ + ^, where m is the particle's mass, k is the force constant, = / is the angular frequency of the oscillator, ^ is the position operator (given by x in the coordinate basis), and ^ is the momentum operator (given by ^ = / in the coordinate basis).

  5. Anti-symmetric operator - Wikipedia

    en.wikipedia.org/wiki/Anti-symmetric_operator

    Another type of operator in quantum field theory, discovered in the early 1970s, is known as the anti-symmetric operator.This operator, similar to spin in non-relativistic quantum mechanics is a ladder operator that can create two fermions of opposite spin out of a boson or a boson from two fermions.

  6. Clebsch–Gordan coefficients - Wikipedia

    en.wikipedia.org/wiki/Clebsch–Gordan_coefficients

    The total angular momentum operators can be shown to satisfy the very same commutation relations, [,] = , where k, l, m ∈ {x, y, z}. Indeed, the preceding construction is the standard method [ 4 ] for constructing an action of a Lie algebra on a tensor product representation.

  7. Angular momentum diagrams (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_diagrams...

    In quantum mechanics and its applications to quantum many-particle systems, notably quantum chemistry, angular momentum diagrams, or more accurately from a mathematical viewpoint angular momentum graphs, are a diagrammatic method for representing angular momentum quantum states of a quantum system allowing calculations to be done symbolically.

  8. Wigner D-matrix - Wikipedia

    en.wikipedia.org/wiki/Wigner_D-matrix

    Examples are the angular momentum of an electron in an atom, electronic spin, and the angular momentum of a rigid rotor. In all cases, the three operators satisfy the following commutation relations, [,] =, [,] =, [,] =, where i is the purely imaginary number and the Planck constant ħ has been set equal to one. The Casimir operator

  9. Holstein–Primakoff transformation - Wikipedia

    en.wikipedia.org/wiki/Holstein–Primakoff...

    One important aspect of quantum mechanics is the occurrence of—in general—non-commuting operators which represent observables, quantities that can be measured. A standard example of a set of such operators are the three components of the angular momentum operators, which are crucial in many quantum systems. These operators are complicated ...