Search results
Results from the WOW.Com Content Network
The space complexity of an algorithm or a data structure is the amount of memory space required to solve an instance of the computational problem as a function of characteristics of the input. It is the memory required by an algorithm until it executes completely. [ 1 ]
Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n × n integer matrix is O ( n 3 ) {\displaystyle O(n^{3})} for the usual algorithms ( Gaussian elimination ).
In particular, larger instances will require more time to solve. Thus the time required to solve a problem (or the space required, or any measure of complexity) is calculated as a function of the size of the instance. The input size is typically measured in bits. Complexity theory studies how algorithms scale as input size increases.
The state-space complexity of a game is the number of legal game positions reachable from the initial position of the game. [1]When this is too hard to calculate, an upper bound can often be computed by also counting (some) illegal positions (positions that can never arise in the course of a game).
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, M ( n ) {\displaystyle M(n)} below stands in for the complexity of the chosen multiplication algorithm.
In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to ...
Turing machines enable intuitive notions of "time" and "space". The time complexity of a TM on a particular input is the number of elementary steps that the Turing machine takes to reach either an accept or reject state. The space complexity is the number of cells on its tape that it uses to reach either an accept or reject state.
In particular, no program P computing a lower bound for each text's Kolmogorov complexity can return a value essentially larger than P's own length (see section § Chaitin's incompleteness theorem); hence no single program can compute the exact Kolmogorov complexity for infinitely many texts. Kolmogorov complexity is the length of the ...