Search results
Results from the WOW.Com Content Network
A function that is injective. For example, the green relation in the diagram is an injection, but the red, blue and black ones are not. A surjection [d] A function that is surjective. For example, the green relation in the diagram is a surjection, but the red, blue and black ones are not. A bijection [d] A function that is injective and surjective.
The relation "≥" between real numbers is reflexive and transitive, but not symmetric. For example, 7 ≥ 5 but not 5 ≥ 7. The relation "has a common factor greater than 1 with" between natural numbers greater than 1, is reflexive and symmetric, but not transitive. For example, the natural numbers 2 and 6 have a common factor greater than 1 ...
The nodes of any finite directed acyclic graph, with the relation R defined such that a R b if and only if there is an edge from a to b. Examples of relations that are not well-founded include: The negative integers {−1, −2, −3, ...}, with the usual order, since any unbounded subset has no least element.
Congruence is an example of an equivalence relation. The leftmost two triangles are congruent, while the third and fourth triangles are not congruent to any other triangle shown here. Thus, the first two triangles are in the same equivalence class, while the third and fourth triangles are each in their own equivalence class.
For example, the red and green binary relations in the diagram are functions, but the blue and black ones are not. An injection: a function that is injective. For example, the green relation in the diagram is an injection, but the red one is not; the black and the blue relation is not even a function. A surjection: a function that is surjective ...
For example, ≥ is a reflexive relation but > is not. Irreflexive (or strict) for all x ∈ X, not xRx. For example, > is an irreflexive relation, but ≥ is not. Coreflexive for all x, y ∈ X, if xRy then x = y. [7] For example, the relation over the integers in which each odd number is related to itself is a coreflexive relation.
For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...
A relation with n "places" is variously called an n-ary relation, an n-adic relation or a relation of degree n. Relations with a finite number of places are called finitary relations (or simply relations if the context is clear). It is also possible to generalize the concept to infinitary relations with infinite sequences. [4]