Search results
Results from the WOW.Com Content Network
The distribution is said to be left-skewed, left-tailed, or skewed to the left, despite the fact that the curve itself appears to be skewed or leaning to the right; left instead refers to the left tail being drawn out and, often, the mean being skewed to the left of a typical center of the data. A left-skewed distribution usually appears as a ...
The logarithm transformation and square root transformation are commonly used for positive data, and the multiplicative inverse transformation (reciprocal transformation) can be used for non-zero data. The power transformation is a family of transformations parameterized by a non-negative value λ that includes the logarithm, square root, and ...
Type I has also been called the skew-logistic distribution. Type IV subsumes the other types and is obtained when applying the logit transform to beta random variates. Following the same convention as for the log-normal distribution , type IV may be referred to as the logistic-beta distribution , with reference to the standard logistic function ...
Most data files are adapted from UCI Machine Learning Repository data, some are collected from the literature. treated for missing values, numerical attributes only, different percentages of anomalies, labels 1000+ files ARFF: Anomaly detection: 2016 (possibly updated with new datasets and/or results) [331] Campos et al.
Skewness risk can arise in any quantitative model that assumes a symmetric distribution (such as the normal distribution) but is applied to skewed data. Ignoring skewness risk, by assuming that variables are symmetrically distributed when they are not, will cause any model to understate the risk of variables with high skewness.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
A simple example of a Cayley transform can be done on the real projective line. The Cayley transform here will permute the elements of {1, 0, −1, ∞} in sequence. For example, it maps the positive real numbers to the interval [−1, 1].
Waikato Environment for Knowledge Analysis (Weka) is a collection of machine learning and data analysis free software licensed under the GNU General Public License. It was developed at the University of Waikato, New Zealand and is the companion software to the book "Data Mining: Practical Machine Learning Tools and Techniques". [1]