Search results
Results from the WOW.Com Content Network
Degenerate states are also obtained when the sum of squares of quantum numbers corresponding to different energy levels are the same. For example, the three states (n x = 7, n y = 1), (n x = 1, n y = 7) and (n x = n y = 5) all have = and constitute a degenerate set.
Molecular orbitals are said to be degenerate if they have the same energy. For example, in the homonuclear diatomic molecules of the first ten elements, the molecular orbitals derived from the p x and the p y atomic orbitals result in two degenerate bonding orbitals (of low energy) and two degenerate antibonding orbitals (of high energy). [13]
It arises due to the fact that when the d-orbitals are split in a ligand field (as described above), some of them become lower in energy than before with respect to a spherical field known as the barycenter in which all five d-orbitals are degenerate. For example, in an octahedral case, the t 2g set becomes lower in energy than the orbitals in ...
When creating the molecular orbitals from the p orbitals, the three atomic orbitals split into three molecular orbitals, a singly degenerate σ and a doubly degenerate π orbital. Another property we can observe by examining molecular orbital diagrams is the magnetic property of diamagnetic or paramagnetic. If all the electrons are paired ...
Each Landau level is degenerate because of the second quantum number , which can take the values =, where is an integer. The allowed values of N {\displaystyle N} are further restricted by the condition that the center of force of the oscillator, x 0 {\displaystyle x_{0}} , must physically lie within the system, 0 ≤ x 0 < L x {\displaystyle 0 ...
In chemistry, a diradical is a molecular species with two electrons occupying molecular orbitals (MOs) which are degenerate. [1] [2] The term "diradical" is mainly used to describe organic compounds, where most diradicals are extremely reactive and non-Kekulé molecules that are rarely isolated.
For example, the ground state of a carbon atom is 3 P (Term symbol). The superscript three (read as triplet) indicates that the multiplicity 2S+1 = 3, so that the total spin S = 1. This spin is due to two unpaired electrons, as a result of Hund's rule which favors the single filling of degenerate orbitals. The triplet consists of three states ...
However, when the frontier molecular orbitals are degenerate or nearly degenerate, the lowest-energy singlet state wavefunction must account for multiple electronic configurations (see electronic correlation). Thus, is most accurately represented as a combination of Slater determinants.