enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log-linear model - Wikipedia

    en.wikipedia.org/wiki/Log-linear_model

    A log-linear plot or graph, which is a type of semi-log plot. Poisson regression for contingency tables, a type of generalized linear model . The specific applications of log-linear models are where the output quantity lies in the range 0 to ∞, for values of the independent variables X , or more immediately, the transformed quantities f i ( X ...

  3. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    Log-linear analysis starts with the saturated model and the highest order interactions are removed until the model no longer accurately fits the data. Specifically, at each stage, after the removal of the highest ordered interaction, the likelihood ratio chi-square statistic is computed to measure how well the model is fitting the data.

  4. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis , logistic regression [ 1 ] (or logit regression ) estimates the parameters of a logistic model (the coefficients in the linear or non linear ...

  5. Poisson regression - Wikipedia

    en.wikipedia.org/wiki/Poisson_regression

    A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables. Negative binomial regression is a popular generalization of Poisson regression because it loosens the highly restrictive assumption that the variance is equal to the mean made by the Poisson model. The traditional negative ...

  6. Log–log plot - Wikipedia

    en.wikipedia.org/wiki/Loglog_plot

    In such models, after log-transforming the dependent and independent variables, a Simple linear regression model can be fitted, with the errors becoming homoscedastic. This model is useful when dealing with data that exhibits exponential growth or decay, while the errors continue to grow as the independent value grows (i.e., heteroscedastic ...

  7. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    Such a model is termed an exponential-response model (or log-linear model, since the logarithm of the response is predicted to vary linearly). Similarly, a model that predicts a probability of making a yes/no choice (a Bernoulli variable ) is even less suitable as a linear-response model, since probabilities are bounded on both ends (they must ...

  8. Semi-log plot - Wikipedia

    en.wikipedia.org/wiki/Semi-log_plot

    The linearlog type of a semi-log graph, defined by a logarithmic scale on the x axis, and a linear scale on the y axis. Plotted lines are: y = 10 x (red), y = x (green), y = log(x) (blue). In science and engineering, a semi-log plot/graph or semi-logarithmic plot/graph has one axis on a logarithmic scale, the other on a linear scale.

  9. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/wiki/Multinomial_logistic...

    This means that, just as in the log-linear model, only K − 1 of the coefficient vectors are identifiable, and the last one can be set to an arbitrary value (e.g. 0). Actually finding the values of the above probabilities is somewhat difficult, and is a problem of computing a particular order statistic (the first, i.e. maximum) of a set of values.