enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Then rotate the given axis and the point such that the axis is aligned with one of the two coordinate axes for that particular coordinate plane (x, y or z) Use one of the fundamental rotation matrices to rotate the point depending on the coordinate axis with which the rotation axis is aligned.

  3. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The engineering and robotics communities typically use 3-1-3 Euler angles. Notice that after composing the independent rotations, they do not rotate about their axis anymore. The most external matrix rotates the other two, leaving the second rotation matrix over the line of nodes, and the third one in a frame comoving with the body.

  4. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  5. Template:Transform-rotate - Wikipedia

    en.wikipedia.org/wiki/Template:Transform-rotate

    No description. Template parameters [Edit template data] Parameter Description Type Status Rotation angle 1 Positive degrees rotate right, negative values rotate left Default 0 Number optional CSS display display no description Default inline-block String optional See also: {{ Rotate text }} {{ MirrorH }} The above documentation is transcluded from Template:Transform-rotate/doc. (edit ...

  6. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    Spatial rotations in three dimensions can be parametrized using both Euler angles and unit quaternions.This article explains how to convert between the two representations. Actually this simple use of "quaternions" was first presented by Euler some seventy years earlier than Hamilton to solve the problem of magic squar

  7. Rotational symmetry - Wikipedia

    en.wikipedia.org/wiki/Rotational_symmetry

    An object's degree of rotational symmetry is the number of distinct orientations in which it looks exactly the same for each rotation. Certain geometric objects are partially symmetrical when rotated at certain angles such as squares rotated 90°, however the only geometric objects that are fully rotationally symmetric at any angle are spheres ...

  8. Optical rotation - Wikipedia

    en.wikipedia.org/wiki/Optical_rotation

    In fact one name for D-glucose (the biological isomer), is dextrose, referring to the fact that it causes linearly polarized light to rotate to the right or dexter side. In a similar manner, levulose, more commonly known as fructose, causes the plane of polarization to rotate to the left. Fructose is even more strongly levorotatory than glucose ...

  9. Specific rotation - Wikipedia

    en.wikipedia.org/wiki/Specific_rotation

    The CRC Handbook of Chemistry and Physics defines specific rotation as: For an optically active substance, defined by [α] θ λ = α/γl, where α is the angle through which plane polarized light is rotated by a solution of mass concentration γ and path length l.