enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of random number generators - Wikipedia

    en.wikipedia.org/wiki/List_of_random_number...

    These approaches combine a pseudo-random number generator (often in the form of a block or stream cipher) with an external source of randomness (e.g., mouse movements, delay between keyboard presses etc.). /dev/random – Unix-like systems; CryptGenRandom – Microsoft Windows; Fortuna

  3. Xorshift - Wikipedia

    en.wikipedia.org/wiki/Xorshift

    An xorshift+ generator can achieve an order of magnitude fewer failures than Mersenne Twister or WELL. A native C implementation of an xorshift+ generator that passes all tests from the BigCrush suite can typically generate a random number in fewer than 10 clock cycles on x86, thanks to instruction pipelining. [12]

  4. Generator (computer programming) - Wikipedia

    en.wikipedia.org/wiki/Generator_(computer...

    Java has had a standard interface for implementing iterators since its early days, and since Java 5, the "foreach" construction makes it easy to loop over objects that provide the java.lang.Iterable interface. (The Java collections framework and other collections frameworks, typically provide iterators for all collections.)

  5. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation. The method represents one of the oldest and best-known pseudorandom number generator algorithms.

  6. Fisher–Yates shuffle - Wikipedia

    en.wikipedia.org/wiki/Fisher–Yates_shuffle

    However, the need in a Fisher–Yates shuffle to generate random numbers in every range from 0–1 to 0–n almost guarantees that some of these ranges will not evenly divide the natural range of the random number generator. Thus, the remainders will not always be evenly distributed and, worse yet, the bias will be systematically in favor of ...

  7. Pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Pseudorandom_number_generator

    It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...

  8. Blum Blum Shub - Wikipedia

    en.wikipedia.org/wiki/Blum_Blum_Shub

    The seed x 0 should be an integer that is co-prime to M (i.e. p and q are not factors of x 0) and not 1 or 0. The two primes, p and q , should both be congruent to 3 (mod 4) (this guarantees that each quadratic residue has one square root which is also a quadratic residue), and should be safe primes with a small gcd (( p-3 ) /2 , ( q-3 ) /2 ...

  9. Box–Muller transform - Wikipedia

    en.wikipedia.org/wiki/Box–Muller_transform

    It discards 1 − π /4 ≈ 21.46% of the total input uniformly distributed random number pairs generated, i.e. discards 4/ π − 1 ≈ 27.32% uniformly distributed random number pairs per Gaussian random number pair generated, requiring 4/ π ≈ 1.2732 input random numbers per output random number.