Search results
Results from the WOW.Com Content Network
Aerenchyma in stem cross section of a typical wetland plant. Aerenchyma or aeriferous parenchyma [1] or lacunae, is a modification of the parenchyma to form a spongy tissue that creates spaces or air channels in the leaves, stems and roots of some plants, which allows exchange of gases between the shoot and the root. [2]
All the vascular tissues within a particular plant together constitute the vascular tissue system of that plant. The cells in vascular tissue are typically long and slender. Since the xylem and phloem function in the conduction of water, minerals, and nutrients throughout the plant, it is not surprising that their form should be similar to pipes.
The phloem is the living portion of the vascular system of a plant, and serves to move sugars and photosynthate from source cells to sink cells. Phloem tissue is made of sieve elements and companion cells, and is surrounded by parenchyma cells. The sieve element cells work as the main player in transport of phloem sap.
Plant anatomy or phytotomy is the general term for the study of the internal structure of plants.Originally, it included plant morphology, the description of the physical form and external structure of plants, but since the mid-20th century, plant anatomy has been considered a separate field referring only to internal plant structure.
In plant anatomy, tissues are categorized broadly into three tissue systems: the epidermis, the ground tissue, and the vascular tissue. Epidermis – Cells forming the outer surface of the leaves and of the young plant body. Vascular tissue – The primary components of vascular tissue are the xylem and phloem. These transport fluids and ...
Diagram showing the location of the peristome on a Sarracenia (North American pitcher plant). In pitcher plants, the peristome is a reflexed ring (or partial ring) of tissue that surrounds the entrance to the digestive tube in these plants.
Plant tissue culture is a collection of techniques used to maintain or grow plant cells, tissues, or organs under sterile conditions on a nutrient culture medium of known composition. It is widely used to produce clones of a plant in a method known as micropropagation .
Different plant species can have different root pressures even in a similar environment; examples include up to 145 kPa in Vitis riparia but around zero in Celastrus orbiculatus. [ 13 ] The primary force that creates the capillary action movement of water upwards in plants is the adhesion between the water and the surface of the xylem conduits.