Search results
Results from the WOW.Com Content Network
Fluid friction describes the friction between layers of a viscous fluid that are moving relative to each other. [7] [8] Lubricated friction is a case of fluid friction where a lubricant fluid separates two solid surfaces. [9] [10] [11] Skin friction is a component of drag, the force resisting the motion of a fluid across the surface of a body.
The capstan equation [1] or belt friction equation, also known as Euler–Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan).
Linear_friction-1.pdf (370 × 258 pixels, file size: 25 KB, MIME type: application/pdf) This is a file from the Wikimedia Commons.
μ (some authors use the symbol η) is the dynamic viscosity (Pascal-seconds, kg m −1 s −1); R is the radius of the spherical object (meters); is the flow velocity relative to the object (meters per second). Note the minus sign in the equation, the drag force points in the opposite direction to the relative velocity: drag opposes the motion.
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.
Galileo deduced the equation s = 1 / 2 gt 2 in his work geometrically, [4] using the Merton rule, now known as a special case of one of the equations of kinematics. Galileo was the first to show that the path of a projectile is a parabola. Galileo had an understanding of centrifugal force and gave a correct definition of momentum. This ...
Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]
Jean d'Alembert (1717–1783). D'Alembert's principle, also known as the Lagrange–d'Alembert principle, is a statement of the fundamental classical laws of motion. It is named after its discoverer, the French physicist and mathematician Jean le Rond d'Alembert, and Italian-French mathematician Joseph Louis Lagrange.