Search results
Results from the WOW.Com Content Network
28 is also the only even perfect number that is a sum of two positive cubes of integers (Gallardo 2010). [ 51 ] The reciprocals of the divisors of a perfect number N must add up to 2 (to get this, take the definition of a perfect number, σ 1 ( n ) = 2 n {\displaystyle \sigma _{1}(n)=2n} , and divide both sides by n ):
A positive integer that can be written as the sum of two or more consecutive positive integers. A138591: ErdÅ‘s–Nicolas numbers: 24, 2016, 8190, 42336, 45864, 392448, 714240, 1571328, ... A number n such that there exists another number m and , =. A194472: Solution to Stepping Stone Puzzle
Geometrically speaking, a positive integer m is a perfect cube if and only if one can arrange m solid unit cubes into a larger, solid cube. For example, 27 small cubes can be arranged into one larger one with the appearance of a Rubik's Cube, since 3 × 3 × 3 = 27. The difference between the cubes of consecutive integers can be expressed as ...
For example, the integers 6, 10, 14, and 18 are not part of primitive triples, but are part of the non-primitive triples (6, 8, 10), (14, 48, 50) and (18, 80, 82). There exist infinitely many Pythagorean triples in which the hypotenuse and the longest leg differ by exactly one.
Alternatively, an integer sequence may be defined by a property which members of the sequence possess and other integers do not possess. For example, we can determine whether a given integer is a perfect number, (sequence A000396 in the OEIS), even though we do not have a formula for the nth perfect number.
The following is a list of all 52 currently known (as of January 2025) Mersenne primes and corresponding perfect numbers, along with their exponents p. The largest 18 of these have been discovered by the distributed computing project Great Internet Mersenne Prime Search , or GIMPS; their discoverers are listed as "GIMPS / name ", where the name ...
[1] [2] The integers 2 3 and 3 2 are two perfect powers (that is, powers of exponent higher than one) of natural numbers whose values (8 and 9, respectively) are consecutive. The theorem states that this is the only case of two consecutive perfect powers. That is to say, that
The sum of four cubes problem [1] asks whether every integer is the sum of four cubes of integers. It is conjectured the answer is affirmative, but this conjecture has been neither proven nor disproven. [2] Some of the cubes may be negative numbers, in contrast to Waring's problem on sums of cubes, where they are required to be positive.