Search results
Results from the WOW.Com Content Network
kg/m3 lb/yd3 (kg/m3 lb/cuyd) gram per cubic metre: g/m3 g/m 3: 1.0 g/m 3 (0.0017 lb/cu yd) g/m3 kg/m3; g/m3 lb/ft3 (g/cm3 lb/cuft) g/m3 lb/yd3 (g/cm3 lb/cuyd) Imperial & US customary: pound per cubic foot: lb/ft3 lb/cu ft 1.0 lb/cu ft (0.016 g/cm 3) lb/ft3 kg/m3 (lb/cu ft g/m3) lb/ft3 g/m3 (lb/cu ft g/m3) pound per cubic yard: lb/yd3 lb/cu yd 1 ...
Avoirdupois is a system of mass based on a pound of 16 ounces, while Troy weight is the system of mass where 12 troy ounces equals one troy pound. The symbol g 0 is used to denote standard gravity in order to avoid confusion with the (upright) g symbol for gram.
Converts measurements to other units. Template parameters [Edit template data] This template prefers inline formatting of parameters. Parameter Description Type Status Value 1 The value to convert. Number required From unit 2 The unit for the provided value. Suggested values km2 m2 cm2 mm2 ha sqmi acre sqyd sqft sqin km m cm mm mi yd ft in kg g mg lb oz m/s km/h mph K C F m3 cm3 mm3 L mL cuft ...
The pound or pound-mass is a unit of mass used in both the British imperial and United States customary systems of measurement. Various definitions have been used; the most common today is the international avoirdupois pound, which is legally defined as exactly 0.453 592 37 kilograms , and which is divided into 16 avoirdupois ounces . [ 1 ]
By default, the output value is rounded to adjust its precision to match that of the input. An input such as 1234 is interpreted as 1234 ± 0.5, while 1200 is interpreted as 1200 ± 50, and the output value is displayed accordingly, taking into account the scale factor used in the conversion.
1795: the gram (1 / 1000 of a kilogram) was provisionally defined as the mass of one cubic centimetre of water at the melting point of ice. [12] 1799: The Kilogramme des Archives was manufactured as a prototype. It had a mass equal to the mass of 1 dm 3 of water at the temperature of its maximum density, which is approximately 4 °C. [13]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
If a first body of mass m A is placed at a distance r (center of mass to center of mass) from a second body of mass m B, each body is subject to an attractive force F g = Gm A m B /r 2, where G = 6.67 × 10 −11 N⋅kg −2 ⋅m 2 is the "universal gravitational constant". This is sometimes referred to as gravitational mass.