enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross-entropy - Wikipedia

    en.wikipedia.org/wiki/Cross-entropy

    In information theory, the cross-entropy between two probability distributions and , over the same underlying set of events, measures the average number of bits needed to identify an event drawn from the set when the coding scheme used for the set is optimized for an estimated probability distribution , rather than the true distribution .

  3. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    Intuitively, the entropy H X of a discrete random variable X is a measure of the amount of uncertainty associated with the value of X when only its distribution is known. The entropy of a source that emits a sequence of N symbols that are independent and identically distributed (iid) is N ⋅ H bits (per message of N symbols).

  4. Binary symmetric channel - Wikipedia

    en.wikipedia.org/wiki/Binary_symmetric_channel

    The entropy at the output for a given and fixed input symbol ((| =)) equals the binary entropy function, which leads to the third line and this can be further simplified. In the last line, only the first term H ( Y ) {\displaystyle H(Y)} depends on the input distribution p X ( x ) {\displaystyle p_{X}(x)} .

  5. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    Entropy (thermodynamics) Cross entropy – is a measure of the average number of bits needed to identify an event from a set of possibilities between two probability distributions; Entropy (arrow of time) Entropy encoding – a coding scheme that assigns codes to symbols so as to match code lengths with the probabilities of the symbols. Entropy ...

  6. Cross-entropy method - Wikipedia

    en.wikipedia.org/wiki/Cross-Entropy_Method

    The cross-entropy (CE) method is a Monte Carlo method for importance sampling and optimization. It is applicable to both combinatorial and continuous problems, with either a static or noisy objective. The method approximates the optimal importance sampling estimator by repeating two phases: [1] Draw a sample from a probability distribution.

  7. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    The joint information is equal to the mutual information plus the sum of all the marginal information (negative of the marginal entropies) for each particle coordinate. Boltzmann's assumption amounts to ignoring the mutual information in the calculation of entropy, which yields the thermodynamic entropy (divided by the Boltzmann constant).

  8. Asymptotic equipartition property - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_equipartition...

    Given a discrete-time stationary ergodic stochastic process on the probability space (,,), the asymptotic equipartition property is an assertion that, almost surely, ⁡ (,, …,) where () or simply denotes the entropy rate of , which must exist for all discrete-time stationary processes including the ergodic ones.

  9. Coding theory - Wikipedia

    en.wikipedia.org/wiki/Coding_theory

    Various techniques used by source coding schemes try to achieve the limit of entropy of the source. C(x) ≥ H(x), where H(x) is entropy of source (bitrate), and C(x) is the bitrate after compression. In particular, no source coding scheme can be better than the entropy of the source.