Search results
Results from the WOW.Com Content Network
Structural model at atomic resolution of bacteriophage T4 [1] The structure of a typical myovirus bacteriophage Anatomy and infection cycle of bacteriophage T4.. A bacteriophage (/ b æ k ˈ t ɪər i oʊ f eɪ dʒ /), also known informally as a phage (/ ˈ f eɪ dʒ /), is a virus that infects and replicates within bacteria and archaea.
Phage injecting its genome into bacterial cell An electron micrograph of bacteriophages attached to a bacterial cell. These viruses are the size and shape of coliphage T1. Phage therapy, viral phage therapy, or phagotherapy is the therapeutic use of bacteriophages for the treatment of pathogenic bacterial infections.
The basic experimental toolkit of phage "organismal" ecology consists of the single-step growth (or one-step growth; [12]) experiment and the phage adsorption curve. [13] Single-step growth is a means of determining the phage latent period ( example ), which is approximately equivalent (depending on how it is defined) to the phage period of ...
The average virion is about one one-hundredth the linear size of the average bacterium. A teaspoon of seawater typically contains about fifty million viruses. [6] Most of these viruses are bacteriophages which infect and destroy marine bacteria and control the growth of phytoplankton at the base of the marine food web. Bacteriophages are ...
Several bacteriophages contain toxin genes that become incorporated into the host bacteria genome through infection and render the bacteria toxic. [9] Many well known bacterial toxins are produced from specific strains of the bacteria species that have obtained toxigenicity through lysogenic conversion, pseudolysogeny, or horizontal gene ...
Scientists developed antibiotics to kill bacteria. But they aren’t effective against viruses. And because bacteria can adapt over time, overuse of antibiotics has created more and more bacterial ...
In a 1945 study by Demerec and Fano, [4] T7 was used to describe one of the seven phage types (T1 to T7) that grow lytically on Escherichia coli. [5] Although all seven phages were numbered arbitrarily, phages with odd numbers, or T-odd phages, were later discovered to share morphological and biochemical features that distinguish them from T-even phages. [6]
The RM system was first discovered by Salvatore Luria and Mary Human in 1952 and 1953. [1] [2] They found that a bacteriophage growing within an infected bacterium could be modified, so that upon their release and re-infection of a related bacterium the bacteriophage's growth is restricted (inhibited; also described by Luria in his autobiography on pages 45 and 99 in 1984). [3]