Search results
Results from the WOW.Com Content Network
The lattice energy of an ionic compound depends strongly upon the charges of the ions that comprise the solid, which must attract or repel one another via Coulomb's Law. More subtly, the relative and absolute sizes of the ions influence Δ H l a t t i c e {\displaystyle \Delta H_{lattice}} .
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
For most ionic compounds dissolved in water, the van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance. This is true for ideal solutions only, as occasionally ion pairing occurs in solution. At a given instant a small percentage of the ions are paired and count as a single particle.
These tables list values of molar ionization energies, measured in kJ⋅mol −1.This is the energy per mole necessary to remove electrons from gaseous atoms or atomic ions.
The following oxidation–reduction tree for a simple ionic compound, AX, where A is a cation and X is an anion, summarizes the various ways in which intrinsic defects can form. Depending on the cation-to-anion ratio, the species can either be reduced and therefore classified as n-type , or if the converse is true, the ionic species is ...
For each atom, the column marked 1 is the first ionization energy to ionize the neutral atom, the column marked 2 is the second ionization energy to remove a second electron from the +1 ion, the column marked 3 is the third ionization energy to remove a third electron from the +2 ion, and so on.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.