Search results
Results from the WOW.Com Content Network
In many engineering applications the local flow velocity vector field is not known in every point and the only accessible velocity is the bulk velocity or average flow velocity ¯ (with the usual dimension of length per time), defined as the quotient between the volume flow rate ˙ (with dimension of cubed length per time) and the cross sectional area (with dimension of square length):
where L is the characteristic length, u the local flow velocity, D the mass diffusion coefficient, Re the Reynolds number, Sc the Schmidt number, Pr the Prandtl number, and α the thermal diffusivity, = where k is the thermal conductivity, ρ the density, and c p the specific heat capacity.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Flow in phase space specified by the differential equation of a pendulum.On the horizontal axis, the pendulum position, and on the vertical one its velocity. In mathematics, a flow formalizes the idea of the motion of particles in a fluid.
M is the local Mach number, u is the local flow velocity with respect to the boundaries (either internal, such as an object immersed in the flow, or external, like a channel), and; c is the speed of sound in the medium, which in air varies with the square root of the thermodynamic temperature.
The Froude number is based on the speed–length ratio which he defined as: [2] [3] = where u is the local flow velocity (in m/s), g is the local gravity field (in m/s 2), and L is a characteristic length (in m). The Froude number has some analogy with the Mach number.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The term (ω ∙ ∇) u on the right-hand side describes the stretching or tilting of vorticity due to the flow velocity gradients. Note that (ω ∙ ∇) u is a vector quantity, as ω ∙ ∇ is a scalar differential operator, while ∇u is a nine-element tensor quantity. The term ω(∇ ∙ u) describes stretching of vorticity due to flow ...