Search results
Results from the WOW.Com Content Network
The global electromagnetic resonance phenomenon is named after physicist Winfried Otto Schumann who predicted it mathematically in 1952. Schumann resonances are the principal background in the part of the electromagnetic spectrum [2] from 3 Hz through 60 Hz [3] and appear as distinct peaks at extremely low frequencies around 7.83 Hz (fundamental), 14.3, 20.8, 27.3, and 33.8 Hz.
Download QR code; In other projects ... (Ogg Theora video file, length 24 s, ... Animation of Schumann resonance in Earth's atmosphere. Date: 11 January 2012:
The fundamental Schumann resonance is at approximately 7.83 Hz, the frequency at which the wavelength equals the circumference of the Earth, and higher harmonics occur at 14.1, 20.3, 26.4, and 32.4 Hz, etc. Lightning strikes excite these resonances, causing the Earth–ionosphere cavity to "ring" like a bell, resulting in a peak in the noise ...
The Schumann resonances are a set of spectrum peaks in the extremely low frequency (ELF) portion of the Earth's electromagnetic field spectrum. Schumann resonance is due to the space between the surface of the Earth and the conductive ionosphere acting as a waveguide. The limited dimensions of the earth cause this waveguide to act as a resonant ...
Winfried Otto Schumann (May 20, 1888 – September 22, 1974) was a German physicist and electrical engineer who predicted the Schumann resonances, a series of low-frequency resonances caused by lightning discharges in the atmosphere.
A telluric current (from Latin tellūs ' earth '), or Earth current, [1] is an electric current that flows underground or through the sea, resulting from natural and human-induced causes. These currents have extremely low frequency and traverse large areas near or at Earth 's surface.
Nuclear magnetic resonance (NMR) in the geomagnetic field is conventionally referred to as Earth's field NMR (EFNMR).EFNMR is a special case of low field NMR.. When a sample is placed in a constant magnetic field and stimulated (perturbed) by a time-varying (e.g., pulsed or alternating) magnetic field, NMR active nuclei resonate at characteristic frequencies.
As an example a resonance with the elliptical modal shape of the stator can occur if the force wavenumber is 2. Under resonance conditions, the maxima of the electromagnetic excitation along the airgap and the maxima of the modal shape displacement are in phase.