enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Amino acid - Wikipedia

    en.wikipedia.org/wiki/Amino_acid

    Many proteinogenic and non-proteinogenic amino acids have biological functions beyond being precursors to proteins and peptides.In humans, amino acids also have important roles in diverse biosynthetic pathways. Defenses against herbivores in plants sometimes employ amino acids. [95] Examples:

  3. Transmembrane protein - Wikipedia

    en.wikipedia.org/wiki/Transmembrane_protein

    For example, the "unfolded" bacteriorhodopsin in SDS micelles has four transmembrane α-helices folded, while the rest of the protein is situated at the micelle-water interface and can adopt different types of non-native amphiphilic structures. Free energy differences between such detergent-denatured and native states are similar to stabilities ...

  4. Transmembrane domain - Wikipedia

    en.wikipedia.org/wiki/Transmembrane_domain

    A transmembrane domain (TMD) is a membrane-spanning protein domain.TMDs may consist of one or several alpha-helices or a transmembrane beta barrel.Because the interior of the lipid bilayer is hydrophobic, the amino acid residues in TMDs are often hydrophobic, although proteins such as membrane pumps and ion channels can contain polar residues.

  5. Integral membrane protein - Wikipedia

    en.wikipedia.org/wiki/Integral_membrane_protein

    The part of the protein that is embedded in the hydrophobic regions of the bilayer are alpha helical and composed of predominantly hydrophobic amino acids. The C terminal end of the protein is in the cytosol while the N terminal region is in the outside of the cell.

  6. Protein phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Protein_phosphorylation

    Phosphorylation introduces a charged and hydrophilic group in the side chain of amino acids, possibly changing a protein's structure by altering interactions with nearby amino acids. Some proteins such as p53 contain multiple phosphorylation sites, facilitating complex, multi-level regulation. Because of the ease with which proteins can be ...

  7. Active site - Wikipedia

    en.wikipedia.org/wiki/Active_site

    Amino acids that can form nucleophile including serine, cysteine, aspartate and glutamine. [citation needed] Electrophilic catalysis: The mechanism behind this process is exactly same as nucleophilic catalysis except that now amino acids in active site act as electrophile while substrates are nucleophiles. This reaction usually requires ...

  8. Tyrosine - Wikipedia

    en.wikipedia.org/wiki/Tyrosine

    Phosphorylation of these three amino acids' moieties (including tyrosine) creates a negative charge on their ends, that is greater than the negative charge of the only negatively charged aspartic and glutamic acids. Phosphorylated proteins keep these same properties—which are useful for more reliable protein-protein interactions—by means of ...

  9. Lysine - Wikipedia

    en.wikipedia.org/wiki/Lysine

    Lysine (symbol Lys or K) [2] is an α-amino acid that is a precursor to many proteins.Lysine contains an α-amino group (which is in the protonated −NH + 3 form when the lysine is dissolved in water at physiological pH), an α-carboxylic acid group (which is in the deprotonated −COO − form when the lysine is dissolved in water at physiological pH), and a side chain (CH 2) 4 NH 2 (which ...