enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  3. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The Taylor series of any polynomial is the polynomial itself.. The Maclaurin series of ⁠ 1 / 1 − x ⁠ is the geometric series + + + +. So, by substituting x for 1 − x, the Taylor series of ⁠ 1 / x ⁠ at a = 1 is

  4. Bernoulli number - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_number

    In mathematics, the Bernoulli numbers B n are a sequence of rational numbers which occur frequently in analysis.The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain ...

  5. Integral test for convergence - Wikipedia

    en.wikipedia.org/wiki/Integral_test_for_convergence

    Once such a sequence is found, a similar question can be asked with f(n) taking the role of 1/n, and so on. In this way it is possible to investigate the borderline between divergence and convergence of infinite series. Using the integral test for convergence, one can show (see below) that, for every natural number k, the series

  6. Leibniz formula for π - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for_π

    The formula is a special case of the Euler–Boole summation formula for alternating series, providing yet another example of a convergence acceleration technique that can be applied to the Leibniz series. In 1992, Jonathan Borwein and Mark Limber used the first thousand Euler numbers to calculate π to 5,263 decimal places with the Leibniz ...

  7. Euler–Maclaurin formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Maclaurin_formula

    The remainder term arises because the integral is usually not exactly equal to the sum. The formula may be derived by applying repeated integration by parts to successive intervals [r, r + 1] for r = m, m + 1, …, n − 1. The boundary terms in these integrations lead to the main terms of the formula, and the leftover integrals form the ...

  8. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    The first four partial sums of the series 1 + 2 ... sequence of triangular ... of f decay quickly enough for the remainder terms in the Euler–Maclaurin formula ...

  9. Logarithmic distribution - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_distribution

    In other words, if N is a random variable with a Poisson distribution, and X i, i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log(p) distribution, then = has a negative binomial distribution.