Search results
Results from the WOW.Com Content Network
Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock ( protolith ) is subjected to temperatures greater than 150 to 200 °C (300 to 400 °F) and, often, elevated pressure of 100 megapascals (1,000 bar ) or more, causing profound physical or chemical changes.
[33] [34] Subsequent erosion of the mountains exposes the roots of the orogenic belt as extensive outcrops of metamorphic rock, [35] characteristic of mountain chains. [33] Metamorphic rock formed in these settings tends to shown well-developed foliation. [33] Foliation develops when a rock is being shortened along one axis during metamorphism.
A metamorphic facies is a set of mineral assemblages in metamorphic rocks formed under similar pressures and temperatures. [1] The assemblage is typical of what is formed in conditions corresponding to an area on the two dimensional graph of temperature vs. pressure (See diagram in Figure 1). [ 1 ]
The following is a list of rock types recognized by geologists.There is no agreed number of specific types of rock. Any unique combination of chemical composition, mineralogy, grain size, texture, or other distinguishing characteristics can describe a rock type.
Gneiss (/ n aɪ s / nice) is a common and widely distributed type of metamorphic rock. It is formed by high-temperature and high-pressure metamorphic processes acting on formations composed of igneous or sedimentary rocks. This rock is formed under pressures anywhere from 2 to 15 kbar, sometimes even more, and temperatures over 300 °C (572 °F).
In earlier terminology, scoria was usually defined with a size range, e.g. 2 to 24 mm (0.079 to 0.945 in) in diameter, but neither color nor composition was typically a part of the definition. [ 5 ] [ 6 ] During the 1980s, the size range disappeared from the definition, and a requirement was added that scoria be black or reddish in color and/or ...
Metamorphic rocks with clockwise P-T-t paths are commonly associated with a near-isothermal decompressional P-T trajectory. [5] [6] Clockwise P-T-t path normally consists of three parts: [2] Initial heating and compression until arriving a peak, a high pressure-low temperature peak is often observed. (Prograde metamorphism until peak) [2]
In igneous and metamorphic rocks, grain size is a measure of the sizes of the crystals in the rock. In igneous rock, this is used to determine the rate at which the material cooled: large crystals typically indicate intrusive igneous rock, while small crystals indicate that the rock was extrusive. [17]