enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hermitian adjoint - Wikipedia

    en.wikipedia.org/wiki/Hermitian_adjoint

    For a conjugate-linear operator the definition of adjoint needs to be adjusted in order to compensate for the complex conjugation. An adjoint operator of the conjugate-linear operator A on a complex Hilbert space H is an conjugate-linear operator A ∗ : H → H with the property:

  3. Self-adjoint operator - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint_operator

    In practical terms, having an essentially self-adjoint operator is almost as good as having a self-adjoint operator, since we merely need to take the closure to obtain a self-adjoint operator. In physics, the term Hermitian refers to symmetric as well as self-adjoint operators alike. The subtle difference between the two is generally overlooked.

  4. Normal operator - Wikipedia

    en.wikipedia.org/wiki/Normal_operator

    In mathematics, especially functional analysis, a normal operator on a complex Hilbert space H is a continuous linear operator N : H → H that commutes with its Hermitian adjoint N*, that is: NN* = N*N. [1] Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood.

  5. Adjoint functors - Wikipedia

    en.wikipedia.org/wiki/Adjoint_functors

    The most important property of adjoints is their continuity: every functor that has a left adjoint (and therefore is a right adjoint) is continuous (i.e. commutes with limits in the category theoretical sense); every functor that has a right adjoint (and therefore is a left adjoint) is cocontinuous (i.e. commutes with colimits).

  6. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    The last property given above shows that if one views as a linear transformation from Hilbert space to , then the matrix corresponds to the adjoint operator of . The concept of adjoint operators between Hilbert spaces can thus be seen as a generalization of the conjugate transpose of matrices with respect to an orthonormal basis.

  7. Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Hermitian_matrix

    In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the i-th row and j-th column is equal to the complex conjugate of the element in the j-th row and i-th column, for all indices i and j: = ¯

  8. Operator (physics) - Wikipedia

    en.wikipedia.org/wiki/Operator_(physics)

    A further property of a Hermitian operator is that eigenfunctions corresponding to different eigenvalues are orthogonal. [1] In matrix form, operators allow real eigenvalues to be found, corresponding to measurements. Orthogonality allows a suitable basis set of vectors to represent the state of the quantum system.

  9. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    Even more general is the concept of adjoint operator for operators on (possibly infinite-dimensional) complex Hilbert spaces. All this is subsumed by the *-operations of C*-algebras . One may also define a conjugation for quaternions and split-quaternions : the conjugate of a + b i + c j + d k {\textstyle a+bi+cj+dk} is a − b i − c j − d ...