Search results
Results from the WOW.Com Content Network
The cores range in mass from a fraction to several times that of the Sun and are called protostellar (protosolar) nebulae. [2] They possess diameters of 0.01–0.1 pc (2,000–20,000 AU) and a particle number density of roughly 10,000 to 100,000 cm −3. [a] [35] [37] The initial collapse of a solar-mass protostellar nebula takes around 100,000 ...
The various planets are thought to have formed from the solar nebula, the disc-shaped cloud of gas and dust left over from the Sun's formation. [36] The currently accepted method by which the planets formed is accretion, in which the planets began as dust grains in orbit around the central protostar.
To explain that volatile elements like mercury could be retained by the terrestrial planets, he postulated a moderately thick gas and dust halo shielding the planets from the Sun. To form diamonds, pure carbon crystals, moon-sized objects, and gas spheres that became gravitationally unstable would have to form in the disk, with the gas and dust ...
Circumstellar discs HD 141943 and HD 191089.The bottom images are illustrations of above real images. [1]A circumstellar disc (or circumstellar disk) is a torus, pancake or ring-shaped accretion disk of matter composed of gas, dust, planetesimals, asteroids, or collision fragments in orbit around a star.
An interstellar cloud is generally an accumulation of gas, plasma, and dust in our and other galaxies. But differently, an interstellar cloud is a denser-than-average region of the interstellar medium , the matter and radiation that exists in the space between the star systems in a galaxy.
The Solar System is surrounded by the Local Interstellar Cloud, although it is not clear if it is embedded in the Local Interstellar Cloud or if it lies just outside the cloud's edge. [262] Multiple other interstellar clouds exist in the region within 300 light-years of the Sun, known as the Local Bubble. [262]
As this collapsing cloud, called a solar nebula, becomes denser, random gas motions originally present in the cloud average out in favor of the direction of the nebula's net angular momentum. Conservation of angular momentum causes the rotation to increase as the nebula radius decreases. This rotation causes the cloud to flatten out—much like ...
The W51 nebula in Aquila - one of the largest star factories in the Milky Way (August 25, 2020). Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred to as "stellar nurseries" or "star-forming regions", collapse and form stars. [1]