Search results
Results from the WOW.Com Content Network
Fluorescein aqueous solutions, diluted from 10,000 to 1 parts-per-million in intervals of 10 fold dilution. At 1 ppm the solution is a very pale yellow. As the concentration increases the colour becomes a more vibrant yellow, then orange, with the final 10,000 ppm a deep red colour.
1 volume percent = 10,000 ppmv (i.e., parts per million by volume) with a million being defined as 10 6. Care must be taken with the concentrations expressed as ppbv to differentiate between the British billion which is 10 12 and the USA billion which is 10 9 (also referred to as the long scale and short scale billion, respectively).
0.1 × ( 12 ÷ 8 ) = 0.15 grain per dscf when corrected to a gas having a specified reference CO 2 content of 12 volume %. Notes: Although ppmv and grains per dscf have been used in the above examples, concentrations such as ppbv (i.e., parts per billion by volume), volume percent, grams per dscm and many others may also be used.
The abundance of elements in Earth's crust is shown in tabulated form with the estimated crustal abundance for each chemical element shown as mg/kg, or parts per million (ppm) by mass (10,000 ppm = 1%).
Chemical regulation is sometimes [clarification needed] expressed in parts per million (ppm), but often [clarification needed] in milligrams per cubic meter (mg/m 3). [2] Units of measure for physical agents such as noise are specific to the agent.
The concentration of a greenhouse gas is typically measured in parts per million (ppm) or parts per billion (ppb) by volume. A CO 2 concentration of 420 ppm means that 420 out of every million air molecules is a CO 2 molecule.
NASA computer models from 2005, calculated based on information available at that time, show the amount of methane (parts per million by volume) at the surface (top) and in the stratosphere (bottom) [59] These 2005 NASA computer model simulations—calculated based on data available at that time—illustrate how methane is destroyed as it rises.
DPMO is stated in opportunities per million units for convenience: processes that are considered highly capable (e.g., processes of Six Sigma quality) are those that experience fewer than 3.4 defects per million opportunities (or services provided).