Ads
related to: quantum dots fluorescence effect- Biosensors
Tunable Emission Range From
Visible to Near-Infrared Wavelength
- Imaging
High Fluorescence Intensity
Good Stability and Long Life Time
- Contact Us
info@creative-diagnostics.com
We're Here to Help
- Catalysis
Structures & Surface Ligands
Labeling & Conjugation Kits
- Biosensors
Search results
Results from the WOW.Com Content Network
Fluorescence spectra of CdTe quantum dots of various sizes. Different sized quantum dots emit different color light due to quantum confinement. Quantum dots have been gaining interest from the scientific community because of their interesting optical properties, the main being band gap tunability.
Quantum dots (QDs) are nano-scale semiconductor particles on the order of 2–10 nm in diameter. They possess electrical properties between those of bulk semi-conductors and individual molecules, as well as optical characteristics that make them suitable for applications where fluorescence is desirable, such as medical imaging.
Some authors have provided evidence of size-dependent fluorescence properties, suggesting that the emission arises from electronic transitions with the core of the dots, influenced by quantum confinement effects, [10] [11] whereas other works, including single particle measurements, [12] have rather attributed the fluorescence to recombination ...
[4] [5] The fluorescence emission of GQDs can extend across a broad spectral range, including the UV, visible, and IR. The origin of GQD fluorescence emission is a subject of debate, as it has been related to quantum confinement effects, defect states and functional groups [6] [7] that might depend on the pH, when GQDs are dispersed in water. [8]
Fluorescence microscopy relies upon fluorescent compounds, or fluorophores, in order to image biological systems.Since fluorescence and phosphorescence are competitive methods of relaxation, a fluorophore that undergoes intersystem crossing to the triplet excited state no longer fluoresces and instead remains in the triplet excited state, which has a relatively long lifetime, before ...
Photobleaching is an important parameter to account for in real-time single-molecule fluorescence imaging in biophysics. At light intensities used in single-molecule fluorescence imaging (0.1-1 kW/cm 2 in typical experimental setups), even most robust fluorophores continue to emit for up to 10 seconds before photobleaching in a single step. For ...
Another application of this technique involves using Zinc Sulfide quantum dots to treat industrial waste water. [19] Indium An alternative to the heavy metal quantum dots are quantum dots that contain Indium. One example is the use of CuInS2 quantum dots as fluorescent labels that emit light in the near infrared region of the visible spectrum. [20]
Resonance fluorescence has been seen in a single self-assembled quantum dot as presented by Muller among others in 2007. [7] In the experiment they used quantum dots that were grown between two mirrors in the cavity. Thus the quantum dot was not placed in the cavity, but instead created in it.
Ads
related to: quantum dots fluorescence effect