Search results
Results from the WOW.Com Content Network
The degree and eigenvalue centralities are examples of radial centralities, counting the number of walks of length one or length infinity. Medial centralities count walks which pass through the given vertex. The canonical example is Freeman's betweenness centrality, the number of shortest paths which pass through the given vertex. [7]
Atomic orbitals are classified according to the number of radial and angular nodes. A radial node for the hydrogen atom is a sphere that occurs where the wavefunction for an atomic orbital is equal to zero, while the angular node is a flat plane. [4] Molecular orbitals are classified according to bonding character. Molecular orbitals with an ...
For example, a radial function Φ in two dimensions has the form [1] (,) = (), = + where φ is a function of a single non-negative real variable. Radial functions are contrasted with spherical functions , and any descent function (e.g., continuous and rapidly decreasing ) on Euclidean space can be decomposed into a series consisting of radial ...
Additionally, as is the case with the s orbitals, individual p, d, f and g orbitals with n values higher than the lowest possible value, exhibit an additional radial node structure which is reminiscent of harmonic waves of the same type, as compared with the lowest (or fundamental) mode of the wave.
A radial function is a function : [,).When paired with a norm on a vector space ‖ ‖: [,), a function of the form = (‖ ‖) is said to be a radial kernel centered at .A radial function and the associated radial kernels are said to be radial basis functions if, for any finite set of nodes {} =, all of the following conditions are true:
An example of this is the working memory model. This includes the central executive, phonologic loop, episodic buffer, visuospatial sketchpad, verbal information, long-term memory, and visual information. [2] The central executive is like the secretary of the brain. It decides what needs attention and how to respond.
The reason loop diagrams are called loop diagrams is because the number of k-integrals that are left undetermined by momentum conservation is equal to the number of independent closed loops in the diagram, where independent loops are counted as in homology theory.
In statistical physics and mathematics, percolation theory describes the behavior of a network when nodes or links are added. This is a geometric type of phase transition, since at a critical fraction of addition the network of small, disconnected clusters merge into significantly larger connected, so-called spanning clusters.