Search results
Results from the WOW.Com Content Network
The SI unit of kinematic viscosity is square meter per second (m 2 /s), whereas the CGS unit for kinematic viscosity is the stokes (St, or cm 2 ·s −1 = 0.0001 m 2 ·s −1), named after Sir George Gabriel Stokes. [29] In U.S. usage, stoke is sometimes used as the singular form.
For kinematic viscosity, the SI unit is m^2/s. In engineering, the unit is usually Stoke or centiStoke, with 1 Stoke = 0.0001 m^2/s, and 1 centiStoke = 0.01 Stoke. For liquid, the dynamic viscosity is usually in the range of 0.001 to 1 Pascal-second, or 1 to 1000 centiPoise. The density is usually on the order of 1000 kg/m^3, i.e. that of water.
where ε is the average rate of dissipation of turbulence kinetic energy per unit mass, and; ν is the kinematic viscosity of the fluid.; Typical values of the Kolmogorov length scale, for atmospheric motion in which the large eddies have length scales on the order of kilometers, range from 0.1 to 10 millimeters; for smaller flows such as in laboratory systems, η may be much smaller.
where ν is the kinematic viscosity of water, q is the specific discharge (not the pore velocity — with units of length per time), d is a representative grain diameter for the porous media (the standard choice is math|d 30, which is the 30% passing size from a grain size analysis using sieves — with units of length).
The turbulent Schmidt number is commonly used in turbulence research and is defined as: [3] = where: is the eddy viscosity in units of (m 2 /s); is the eddy diffusivity (m 2 /s).; The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar).
The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.
This measured kinematic viscosity is generally expressed in seconds of flow time which can be converted into centistokes (cSt) using a viscosity calculator. [ 2 ] Flow cups are manufactured using high grade aluminium alloy with stainless steel orifices (where indicated), flow cups are available with a range of UKAS / ISO 17025 certified ...
One can convert efflux time to kinematic viscosity by using an equation for each cup specification number, where t is the efflux time and ν is the kinematic viscosity in centistokes. Zahn Cup #1: ν = 1.1( t − 29)