Search results
Results from the WOW.Com Content Network
Therefore, it is usually best in these programs to use the RGB coordinate. If a source truly only provides a Microsoft HSL input and if you cannot find an alternate, convert it to sRGB. First divide the H by 2 ⁄ 3, and the S and L by 2.4 to obtain normal HSL values. Then use any online tool (such as ) to convert HSL to sRGB.
The CMYK color model (also known as process color, or four color) is a subtractive color model, based on the CMY color model, used in color printing, and is also used to describe the printing process itself. The abbreviation CMYK refers to the four ink plates used: cyan, magenta, yellow, and key (most often black).
In order to convert RGB or CMYK values to or from L*a*b*, the RGB or CMYK data must be linearized relative to light. The reference illuminant of the RGB or CMYK data must be known, as well as the RGB primary coordinates or the CMYK printer's reference data in the form of a color lookup table (CLUT).
Adding a specific mapping function between a color model and a reference color space establishes within the reference color space a definite "footprint", known as a gamut, and for a given color model, this defines a color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB color model.
To see how this works in practice, suppose we have a particular RGB and CMYK color space, and want to convert from this RGB to that CMYK. The first step is to obtain the two ICC profiles concerned. To perform the conversion, each RGB triplet is first converted to the Profile connection space (PCS) using the RGB profile.
Ugh, I think I made some slight errors converting from algorithm to formula. Um I'll leave as is for now, some mathematician can pick up the pieces :-/ Sorry! Kim Bruning 13:32, 3 Apr 2004 (UTC) Here's rewriting this so it's a little neater. This is going off that site before: Converting CMYK -> RGB = CMYK -> CMY -> RGB
After the definition of the RGB model of human vision using the CIE RGB matching functions, the CIE special commission wished to derive another color space from the CIE RGB color space. It was assumed that Grassmann's law held, and the new space would be related to the CIE RGB space by a linear transformation.
RGB is a device-dependent color model: different devices detect or reproduce a given RGB value differently, since the color elements (such as phosphors or dyes) and their response to the individual red, green, and blue levels vary from manufacturer to manufacturer, or even in the same device over time.