enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Representation theory of the Lorentz group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    Many of the representations, both finite-dimensional and infinite-dimensional, are important in theoretical physics. Representations appear in the description of fields in classical field theory, most importantly the electromagnetic field, and of particles in relativistic quantum mechanics, as well as of both particles and quantum fields in quantum field theory and of various objects in string ...

  3. Lorentz group - Wikipedia

    en.wikipedia.org/wiki/Lorentz_group

    The Lorentz group is a six-dimensional noncompact non-abelian real Lie group that is not connected. The four connected components are not simply connected. [1] The identity component (i.e., the component containing the identity element) of the Lorentz group is itself a group, and is often called the restricted Lorentz group, and is denoted SO ...

  4. Gamma matrices - Wikipedia

    en.wikipedia.org/wiki/Gamma_matrices

    This is a spin representation. When these matrices, and linear combinations of them, are exponentiated, they are bispinor representations of the Lorentz group, e.g., the S(Λ) of above are of this form. The 6 dimensional space the σ μν span is the representation space

  5. Lorentz transformation - Wikipedia

    en.wikipedia.org/wiki/Lorentz_transformation

    This means exactly that covariant vectors (thought of as column matrices) transform according to the dual representation of the standard representation of the Lorentz group. This notion generalizes to general representations, simply replace Λ with Π(Λ) .

  6. Symmetry (physics) - Wikipedia

    en.wikipedia.org/wiki/Symmetry_(physics)

    (The '3' refers to the three-dimensional space of an ordinary sphere.) Thus, the symmetry group of the sphere with proper rotations is SO(3). Any rotation preserves distances on the surface of the ball. The set of all Lorentz transformations form a group called the Lorentz group (this may be generalised to the Poincaré group).

  7. Wigner's theorem - Wikipedia

    en.wikipedia.org/wiki/Wigner's_theorem

    It was a key step towards the modern classification scheme of particle types, according to which particle types are partly characterized by which representation of the Lorentz group under which it transforms. The Lorentz group is a symmetry group of every relativistic quantum field theory. Wigner's early work laid the ground for what many ...

  8. Representation of a Lie group - Wikipedia

    en.wikipedia.org/wiki/Representation_of_a_Lie_group

    A complex representation of a group is an action by a group on a finite-dimensional vector space over the field .A representation of the Lie group G, acting on an n-dimensional vector space V over is then a smooth group homomorphism

  9. Relativistic quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_quantum_mechanics

    This is a scalar equation that is invariant under the irreducible one-dimensional scalar representation of the Lorentz group. This means that all of its solutions will belong to a direct sum of (0,0) representations. Solutions that do not belong to the irreducible (0,0) representation will have two or more independent components. Such solutions ...