Search results
Results from the WOW.Com Content Network
Two crystalline forms are known, both being very similar to the corresponding potassium sulfate. Orthorhombic β-K 2 CrO 4 is the common form, but it converts to an α-form above 666 °C. [1] These structures are complex, although the chromate ion adopts the typical tetrahedral geometry. [2]
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
In acid solution the aquated Cr 3+ ion is produced. Cr 2 O 2− 7 + 14 H + + 6 e − → 2 Cr 3+ + 7 H 2 O ε 0 = 1.33 V. In alkaline solution chromium(III) hydroxide is produced. The redox potential shows that chromates are weaker oxidizing agent in alkaline solution than in acid solution. [6] CrO 2− 4 + 4 H 2 O + 3 e − → Cr(OH) 3 + 5 OH −
Chromium(VI) compounds in solution can be detected by adding an acidic hydrogen peroxide solution. The unstable dark blue chromium(VI) peroxide (CrO 5) is formed, which can be stabilized as an ether adduct CrO 5 ·OR 2. [6] Chromic acid has the hypothetical formula H 2 CrO 4. It is a vaguely described chemical, despite many well-defined ...
Potassium dichromate, K 2 Cr 2 O 7, is a common inorganic chemical reagent, most commonly used as an oxidizing agent in various laboratory and industrial applications. As with all hexavalent chromium compounds, it is acutely and chronically harmful to health.
The self-ionization of water (also autoionization of water, autoprotolysis of water, autodissociation of water, or simply dissociation of water) is an ionization reaction in pure water or in an aqueous solution, in which a water molecule, H 2 O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a hydroxide ion, OH −.
The anhydrous form of chromium(II) acetate, and also related chromium(II) carboxylates, can be prepared from chromocene: 4 RCO 2 H + 2 Cr(C 5 H 5) 2 → Cr 2 (O 2 CR) 4 + 4 C 5 H 6. This method provides anhydrous derivatives in a straightforward manner. [8] Because it is so easily prepared, Cr 2 (OAc) 4 (H 2 O) 2 is a starting material for ...
It is obtained on a vast scale by roasting chromium ores in air in the presence of sodium carbonate: 2Cr 2 O 3 + 4 Na 2 CO 3 + 3 O 2 → 4 Na 2 CrO 4 + 4 CO 2. This process converts the chromium into a water-extractable form, leaving behind iron oxides.