Search results
Results from the WOW.Com Content Network
For cyclohexane, cyclohexene, and cyclohexadiene, dehydrogenation is the conceptually simplest pathway for aromatization. The activation barrier decreases with the degree of unsaturation. Thus, cyclohexadienes are especially prone to aromatization. Formally, dehydrogenation is a redox process. Dehydrogenative aromatization is the reverse of ...
Cyclohexane is a colourless, flammable liquid with a distinctive detergent-like odor, reminiscent of cleaning products (in which it is sometimes used). Cyclohexane is mainly used for the industrial production of adipic acid and caprolactam, which are precursors to nylon. [5] Cyclohexyl (C 6 H 11) is the alkyl substituent of cyclohexane and is ...
Cyclohexylmethanol can be produced in two step starting with the hydroformylation of cyclohexene. This process also give cyclohexane, resulting from hydrogenation. The resulting cyclohexanecarboxaldehyde is then hydrogenated to give the alcohol. [5] [6]
The process is commonly employed to reduce or saturate organic compounds. Hydrogenation typically constitutes the addition of pairs of hydrogen atoms to a molecule, often an alkene . Catalysts are required for the reaction to be usable; non-catalytic hydrogenation takes place only at very high temperatures.
Regulation of biological processes occurs when any process is modulated in its frequency, rate or extent. Biological processes are regulated by many means; examples include the control of gene expression, protein modification or interaction with a protein or substrate molecule.
Elution then is the process of removing analytes from the adsorbent by running a solvent, called an eluent, past the adsorbent–analyte complex. As the solvent molecules "elute", or travel down through the chromatography column, they can either pass by the adsorbent–analyte complex or displace the analyte by binding to the adsorbent in its ...
Decarboxylations are pervasive in biology. They are often classified according to the cofactors that catalyze the transformations. [11] Biotin-coupled processes effect the decarboxylation of malonyl-CoA to acetyl-CoA. Thiamine (T:) is the active component for decarboxylation of alpha-ketoacids, including pyruvate: T: + RC(O)CO 2 H → T=C(OH)R ...
Most often, each step in a synthesis is a separate reaction taking place to modify the starting materials. For more complex molecules, a convergent synthetic approach may be better suited. This type of reaction scheme involves the individual preparations of several key intermediates, which are then combined to form the desired product.