enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Region Based Convolutional Neural Networks - Wikipedia

    en.wikipedia.org/wiki/Region_Based_Convolutional...

    Region-based Convolutional Neural Networks (R-CNN) are a family of machine learning models for computer vision, and specifically object detection and localization. [1] The original goal of R-CNN was to take an input image and produce a set of bounding boxes as output, where each bounding box contains an object and also the category (e.g. car or ...

  3. Image segmentation - Wikipedia

    en.wikipedia.org/wiki/Image_segmentation

    Instance segmentation is an approach that identifies, for every pixel, the specific belonging instance of the object. It detects each distinct object of interest in the image. [19] For example, when each person in a figure is segmented as an individual object. Panoptic segmentation combines both semantic and instance segmentation. Like semantic ...

  4. Object detection - Wikipedia

    en.wikipedia.org/wiki/Object_detection

    Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]

  5. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    This is a list of datasets for machine learning research. It is part of the list of datasets for machine-learning research. These datasets consist primarily of images or videos for tasks such as object detection, facial recognition, and multi-label classification.

  6. Multiple instance learning - Wikipedia

    en.wikipedia.org/wiki/Multiple_Instance_Learning

    Multiple instance learning (MIL) falls under the supervised learning framework, where every training instance has a label, either discrete or real valued. MIL deals with problems with incomplete knowledge of labels in training sets. More precisely, in multiple-instance learning, the training set consists of labeled "bags", each of which is a ...

  7. Scale-invariant feature transform - Wikipedia

    en.wikipedia.org/wiki/Scale-invariant_feature...

    Another real-time implementation of scale-space extrema of the Laplacian operator has been presented by Lindeberg and Bretzner based on a hybrid pyramid representation, [16] which was used for human-computer interaction by real-time gesture recognition in Bretzner et al. (2002).

  8. Multi-task learning - Wikipedia

    en.wikipedia.org/wiki/Multi-task_learning

    Multi-task learning (MTL) is a subfield of machine learning in which multiple learning tasks are solved at the same time, while exploiting commonalities and differences across tasks. This can result in improved learning efficiency and prediction accuracy for the task-specific models, when compared to training the models separately.

  9. Instance-based learning - Wikipedia

    en.wikipedia.org/wiki/Instance-based_learning

    Examples of instance-based learning algorithms are the k-nearest neighbors algorithm, kernel machines and RBF networks. [2]: ch. 8 These store (a subset of) their training set; when predicting a value/class for a new instance, they compute distances or similarities between this instance and the training instances to make a decision.

  1. Related searches real time instance segmentation meaning in machine learning project example

    what is image segmentationimage segmentation wikipedia