enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Function composition - Wikipedia

    en.wikipedia.org/wiki/Function_composition

    However, for negative exponents (especially −1), it nevertheless usually refers to the inverse function, e.g., tan −1 = arctan ≠ 1/tan. In some cases, when, for a given function f, the equation g ∘ g = f has a unique solution g, that function can be defined as the functional square root of f, then written as g = f 1/2.

  3. Transitive relation - Wikipedia

    en.wikipedia.org/wiki/Transitive_relation

    The converse (inverse) of a transitive relation is always transitive. For instance, knowing that "is a subset of" is transitive and "is a superset of" is its converse, one can conclude that the latter is transitive as well. The intersection of two transitive relations is always transitive. [4]

  4. Lyapunov exponent - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_exponent

    Lyapunov proved that if the system of the first approximation is regular (e.g., all systems with constant and periodic coefficients are regular) and its largest Lyapunov exponent is negative, then the solution of the original system is asymptotically Lyapunov stable. Later, it was stated by O. Perron that the requirement of regularity of the ...

  5. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    Sometimes, this multivalued inverse is called the full inverse of f, and the portions (such as √ x and − √ x) are called branches. The most important branch of a multivalued function (e.g. the positive square root) is called the principal branch , and its value at y is called the principal value of f −1 ( y ) .

  6. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    If n is a negative integer, is defined only if x has a multiplicative inverse. [38] In this case, the inverse of x is denoted x −1, and x n is defined as (). Exponentiation with integer exponents obeys the following laws, for x and y in the algebraic structure, and m and n integers:

  7. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = b e mod m = d −e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m). Modular exponentiation is efficient to compute, even for very large integers.

  8. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    Fractional calculus was introduced in one of Niels Henrik Abel's early papers [3] where all the elements can be found: the idea of fractional-order integration and differentiation, the mutually inverse relationship between them, the understanding that fractional-order differentiation and integration can be considered as the same generalized ...

  9. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    Solving the inverse relation, as in the previous section, yields the expected 0 i = 1 and −1 i = 0, with negative values of n giving infinite results on the imaginary axis. [ citation needed ] Plotted in the complex plane , the entire sequence spirals to the limit 0.4383 + 0.3606 i , which could be interpreted as the value where n is infinite.