enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    A great advantage of bootstrap is its simplicity. It is a straightforward way to derive estimates of standard errors and confidence intervals for complex estimators of the distribution, such as percentile points, proportions, Odds ratio, and correlation coefficients.

  3. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    العربية; Asturianu; Català; Čeština; Deutsch; Eesti; Ελληνικά; Español; Esperanto; Euskara; فارسی; Français; Galego; 한국어 ...

  4. Resampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Resampling_(statistics)

    The best example of the plug-in principle, the bootstrapping method. Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample, most often with the purpose of deriving robust estimates of standard errors and confidence intervals of a population parameter like a mean, median, proportion, odds ratio ...

  5. Jackknife resampling - Wikipedia

    en.wikipedia.org/wiki/Jackknife_resampling

    The jackknife pre-dates other common resampling methods such as the bootstrap. Given a sample of size , a jackknife estimator can be built by aggregating the parameter estimates from each subsample of size () obtained by omitting one observation. [1]

  6. Out-of-bag error - Wikipedia

    en.wikipedia.org/wiki/Out-of-bag_error

    When bootstrap aggregating is performed, two independent sets are created. One set, the bootstrap sample, is the data chosen to be "in-the-bag" by sampling with replacement.

  7. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    Heteroskedasticity-consistent standard errors that differ from classical standard errors may indicate model misspecification. Substituting heteroskedasticity-consistent standard errors does not resolve this misspecification, which may lead to bias in the coefficients. In most situations, the problem should be found and fixed. [5]

  8. Confidence and prediction bands - Wikipedia

    en.wikipedia.org/wiki/Confidence_and_prediction...

    Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.

  9. Robust statistics - Wikipedia

    en.wikipedia.org/wiki/Robust_statistics

    The plots are based on 10,000 bootstrap samples for each estimator, with some Gaussian noise added to the resampled data (smoothed bootstrap). Panel (a) shows the distribution of the standard deviation, (b) of the MAD and (c) of Qn. The distribution of standard deviation is erratic and wide, a result of the outliers.