Search results
Results from the WOW.Com Content Network
A real function that is a function from real numbers to real numbers can be represented by a graph in the Cartesian plane; such a function is continuous if, roughly speaking, the graph is a single unbroken curve whose domain is the entire real line. A more mathematically rigorous definition is given below. [8]
The convolution of a function with a Gaussian is also known as a Weierstrass transform. A Gaussian function is the wave function of the ground state of the quantum harmonic oscillator. The molecular orbitals used in computational chemistry can be linear combinations of Gaussian functions called Gaussian orbitals (see also basis set (chemistry)).
An arbitrary function φ : R n → C is the characteristic function of some random variable if and only if φ is positive definite, continuous at the origin, and if φ(0) = 1. Khinchine’s criterion. A complex-valued, absolutely continuous function φ, with φ(0) = 1, is a characteristic function if and only if it admits the representation
The definition of uniform continuity appears earlier in the work of Bolzano where he also proved that continuous functions on an open interval do not need to be uniformly continuous. In addition he also states that a continuous function on a closed interval is uniformly continuous, but he does not give a complete proof. [1]
The Gaussian function is the archetypal example of a bell shaped function. A bell-shaped function or simply 'bell curve' is a mathematical function having a characteristic "bell"-shaped curve. These functions are typically continuous or smooth, asymptotically approach zero for large negative/positive x, and have a single, unimodal maximum at ...
Proof of Heine–Cantor theorem. Suppose that and are two metric spaces with metrics and , respectively.Suppose further that a function : is continuous and is compact. We want to show that is uniformly continuous, that is, for every positive real number > there exists a positive real number > such that for all points , in the function domain, (,) < implies that ((), ()) <.
In probability theory and statistics, the logistic distribution is a continuous probability distribution. Its cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks. It resembles the normal distribution in shape but has heavier tails (higher kurtosis).
It is not immediately clear from the definition how exotic a distribution might be. To answer this question, it is instructive to see distributions built up from a smaller space, namely the space of continuous functions. Roughly, any distribution is locally a (multiple) derivative of a continuous function.