Search results
Results from the WOW.Com Content Network
Aerogel contains particles that are 2–5 nm in diameter. After the process of creating aerogel, it will contain a large amount of hydroxyl groups on the surface. The hydroxyl groups can cause a strong reaction when the aerogel is placed in water, causing it to catastrophically dissolve in the water.
Ultralight materials are solids with a density of less than 10 mg/cm 3. Ultralight material is defined by its cellular arrangement and its stiffness and strength that make up its solid constituent. They include silica aerogels, carbon nanotube aerogels, aero graphite, metallic foams, polymeric foams, and metallic micro lattices. [1]
Aerographene or graphene aerogel is the least dense solid known to exist, at 160 g/m 3 (0.0100 lb/cu ft; 0.16 mg/cm 3; 4.3 oz/cu yd). [1] The material reportedly can be produced at the scale of cubic meters.
Aerogel is a low-density solid-state material derived from gel in which the liquid component of the gel has been replaced with gas. The result is an extremely low density solid with several remarkable properties, most notably its effectiveness as a thermal insulator. It is also very strong structurally, able to hold over 2000 times its own weight.
The aerogel sheets have a density of ≈1.5 mg/cm 3, an areal density of 1-3 μg/cm 2, and a thickness of ≈20 μm. The thickness is decreased to ≈50 nm by liquid-based densification to decrease the volume. The aerogel sheets can be stretched as much as three times along the width while low-modulus rubber like behavior is remained.
Boron nitride aerogel is an aerogel made of highly porous boron nitride (BN). It typically consists of a mixture of deformed boron nitride nanotubes and nanosheets. It can have a density as low as 0.6 mg/cm 3 and a specific surface area as high as 1050 m 2 /g, and therefore has potential applications as an absorbent, catalyst support and gas ...
A 2.38 g piece of aerogel supporting a 2.5 kg brick. Aerogels are stiff foams composed of up to 99.8% air and with a density as low as 1 mg per cubic centimetre. Aerogels hold 15 different records for material properties, including best insulator and lowest-density solid.
They offer both a linear regime and a nonlinear super-elastic deformation mode a modulus an order of magnitude greater than for an ultralight material (12.3 megapascals at a density of 7.2 mg per cubic centimeter). Bulk properties can be predicted from component measurements and deformation modes determined by the placement of part types.