Search results
Results from the WOW.Com Content Network
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
where ε is the average rate of dissipation of turbulence kinetic energy per unit mass, and; ν is the kinematic viscosity of the fluid.; Typical values of the Kolmogorov length scale, for atmospheric motion in which the large eddies have length scales on the order of kilometers, range from 0.1 to 10 millimeters; for smaller flows such as in laboratory systems, η may be much smaller.
The submultiple centistokes (cSt) is often used instead, 1 cSt = 1 mm 2 ·s −1 = 10 −6 m 2 ·s −1. 1 cSt is 1 cP divided by 1000 kg/m^3, close to the density of water. The kinematic viscosity of water at 20 °C is about 1 cSt.
The turbulent Schmidt number is commonly used in turbulence research and is defined as: [3] = where: is the eddy viscosity in units of (m 2 /s); is the eddy diffusivity (m 2 /s).; The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar).
A critical value exists for the Rayleigh number, above which fluid motion occurs. [3] = The ratio of the Grashof number to the square of the Reynolds number may be used to determine if forced or free convection may be neglected for a system, or if there's a combination of the two.
is the kinematic viscosity Animation of the linearized shallow-water equations for a rectangular basin, without friction and Coriolis force. The water experiences a splash which generates surface gravity waves that propagate away from the splash location and reflect off the basin walls.
The values below 0 °C refer to supercooled water. Viscosity [11] 1.7921 mPa·s at 0 °C 0.5494 mPa·s at 50 °C 1.5188 mPa·s at 5 °C 0.5064 mPa·s at 55 °C 1.3077 mPa·s at 10 °C 0.4688 mPa·s at 60 °C 1.1404 mPa·s at 15 °C 0.4355 mPa·s at 65 °C 1.0050 mPa·s at 20 °C 0.4061 mPa·s at 70 °C 0.8937 mPa·s at 25 °C
This will result in another viscosity value if the fluid is a non-Newtonian fluid such as paint, but it will give the same viscosity value for a Newtonian fluid such as water, petroleum oil or gas. If another parameter like temperature, T {\displaystyle T} , is changed, and the experiment is repeated with the same force, a new value for ...