enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars.

  3. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Planet orbiting the Sun in a circular orbit (e=0.0) Planet orbiting the Sun in an orbit with e=0.5 Planet orbiting the Sun in an orbit with e=0.2 Planet orbiting the Sun in an orbit with e=0.8 The red ray rotates at a constant angular velocity and with the same orbital time period as the planet, =.

  4. Earth's orbit - Wikipedia

    en.wikipedia.org/wiki/Earth's_orbit

    One complete orbit takes 365.256 days (1 sidereal year), during which time Earth has traveled 940 million km (584 million mi). [2] Ignoring the influence of other Solar System bodies, Earth's orbit, also called Earth's revolution, is an ellipse with the Earth–Sun barycenter as one focus with a current eccentricity of 0.0167. Since this value ...

  5. List of orbits - Wikipedia

    en.wikipedia.org/wiki/List_of_orbits

    Areocentric orbit (named after Ares): An orbit around the planet Mars, such as that of its moons or artificial satellites. For orbits centered about planets other than Earth and Mars and for the dwarf planet Pluto, the orbit names incorporating Greek terminology are not as established and much less commonly used:

  6. Pluto - Wikipedia

    en.wikipedia.org/wiki/Pluto

    Lowell had made a prediction of Planet X's orbit and position in 1915 that was fairly close to Pluto's actual orbit and its position at that time; Ernest W. Brown concluded soon after Pluto's discovery that this was a coincidence. [55]

  7. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    When the thrust stops, the resulting orbit will be different but will once again be described by Kepler's laws which have been set out above. The three laws are: The orbit of every planet is an ellipse with the Sun at one of the foci. A line joining a planet and the Sun sweeps out equal areas during equal intervals of time.

  8. Mercury (planet) - Wikipedia

    en.wikipedia.org/wiki/Mercury_(planet)

    Mercury's orbit is inclined by 7 degrees to the plane of Earth's orbit (the ecliptic), the largest of all eight known solar planets. [112] As a result, transits of Mercury across the face of the Sun can only occur when the planet is crossing the plane of the ecliptic at the time it lies between Earth and the Sun, which is in May or November.

  9. Orbit - Wikipedia

    en.wikipedia.org/wiki/Orbit

    An animation showing a low eccentricity orbit (near-circle, in red), and a high eccentricity orbit (ellipse, in purple). In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object [1] such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such ...