enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. de Laval nozzle - Wikipedia

    en.wikipedia.org/wiki/De_Laval_nozzle

    Because pressure cannot travel upstream through the supersonic flow, the exit pressure can be significantly below the ambient pressure into which it exhausts, but if it is too far below ambient, then the flow will cease to be supersonic, or the flow will separate within the expansion portion of the nozzle, forming an unstable jet that may "flop ...

  3. Supersonic aircraft - Wikipedia

    en.wikipedia.org/wiki/Supersonic_aircraft

    Transonic flow patterns on an airfoil showing flow patterns at and above critical Mach number. Airflow can speed up or slow down locally at different points over an aircraft. In the region around Mach 1, some areas may experience supersonic flow while others are subsonic. This regime is called transonic flight.

  4. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    A supersonic flow that is turned while there is an increase in flow area is also isentropic. Since there is an increase in area, therefore we call this an isentropic expansion. If a supersonic flow is turned abruptly and the flow area decreases, the flow is irreversible due to the generation of shock waves.

  5. Shock diamond - Wikipedia

    en.wikipedia.org/wiki/Shock_diamond

    Shock diamonds are the bright areas seen in the exhaust of this statically mounted Pratt & Whitney J58 engine on full afterburner.. Shock diamonds (also known as Mach diamonds or thrust diamonds, and less commonly Mach disks) are a formation of standing wave patterns that appear in the supersonic exhaust plume of an aerospace propulsion system, such as a supersonic jet engine, rocket, ramjet ...

  6. Rocket engine nozzle - Wikipedia

    en.wikipedia.org/wiki/Rocket_engine_nozzle

    The gas flow rate is constant (i.e., steady) during the period of the propellant burn. The gas flow is non-turbulent and axisymmetric from gas inlet to exhaust gas exit (i.e., along the nozzle's axis of symmetry). The flow is compressible as the fluid is a gas. As the combustion gas enters the rocket nozzle, it is traveling at subsonic velocities.

  7. Components of jet engines - Wikipedia

    en.wikipedia.org/wiki/Components_of_jet_engines

    For supersonic aircraft, the inlet has features such as cones and ramps to produce the most efficient series of shockwaves which form when supersonic flow slows down. The air slows down from the flight speed to subsonic velocity through the shockwaves, then to about half the speed of sound at the compressor through the subsonic part of the inlet.

  8. Propelling nozzle - Wikipedia

    en.wikipedia.org/wiki/Propelling_nozzle

    C-D nozzles can accelerate the jet to supersonic velocities within the divergent section, whereas a convergent nozzle cannot accelerate the jet beyond sonic speed. [ 1 ] Propelling nozzles may have a fixed geometry, or they may have variable geometry to give different exit areas to control the operation of the engine when equipped with an ...

  9. Supersonic speed - Wikipedia

    en.wikipedia.org/wiki/Supersonic_speed

    Supersonic speed is the speed of an object that exceeds the speed of sound (Mach 1). For objects traveling in dry air of a temperature of 20 °C (68 °F) at sea level , this speed is approximately 343.2 m/s (1,126 ft/s; 768 mph; 667.1 kn; 1,236 km/h).