Search results
Results from the WOW.Com Content Network
The concepts of syn and anti addition are used to characterize the different reactions of organic chemistry by reflecting the stereochemistry of the products in a reaction. The type of addition that occurs depends on multiple different factors of a reaction, and is defined by the final orientation of the substituents on the parent molecule.
The major product of the addition reaction will be the one formed from the more stable intermediate. Therefore, the major product of the addition of HX (where X is some atom more electronegative than H) to an alkene has the hydrogen atom in the less substituted position and X in the more substituted position.
Fractional crystallisation can be used to obtain pure para product, relying on the principle that it is less soluble than the ortho and thus will crystallise first. Care must be taken to avoid cocrystallisation of the ortho isomer. [2] Many nitro compounds' ortho and para isomers have quite different boiling points. These isomers can often be ...
For example, when 2-iodobutane is treated with alcoholic potassium hydroxide (KOH), but-2-ene is the major product and but-1-ene is the minor product. [1] More generally, Zaytsev's rule predicts that in an elimination reaction the most substituted product will be the most stable, and therefore the most favored.
The methyl group in toluene is small and will lead the ortho product being the major product. On the other hand, the t-butyl group is very bulky (there are 3 methyl groups attached to a single carbon) and will lead the para product as the major one. Even with toluene, the product is not 2:1 but having a slightly less ortho product.
A gene (His-3) was found to encode a protein that functions as a multienzyme complex having three distinct enzymatic activities in the biosynthesis pathway. [2] A genetic analysis of mutants defective in the N. crassa histidine pathway indicated that the individual activities of the multienzyme complex occur in discrete regions of the His-3 ...
This reaction sequence is thus a condensation reaction since there is a net loss of HCl when the two reactant molecules join. [7] Arrow-pushing mechanism for the Darzens reaction. If the starting halide is an α-halo amide, the product is an α,β-epoxy amide. [8] If an α-halo ketone is used, the product is an α,β-epoxy ketone. [2]
The ortho and para forms of water have recently been isolated. Para water was found to be 25% more reactive for a proton-transfer reaction. [29] [30] Molecular oxygen (O 2) also exists in three lower-energy triplet states and one singlet state, as ground-state paramagnetic triplet oxygen and energized highly reactive diamagnetic singlet oxygen.