Search results
Results from the WOW.Com Content Network
The material responds to the stress with a strain that increases until the material ultimately fails, if it is a viscoelastic liquid. If, on the other hand, it is a viscoelastic solid, it may or may not fail depending on the applied stress versus the material's ultimate resistance.
A Maxwell model is the most simple model viscoelastic material showing properties of a typical liquid. [1] It shows viscous flow on the long timescale, but additional elastic resistance to fast deformations. [2] It is named for James Clerk Maxwell who proposed the model in 1867. [3] [4] It is also known as a Maxwell fluid.
Under certain circumstances, flows of granular materials can be modelled as a continuum, for example using the μ rheology. Such continuum models tend to be non-Newtonian, since the apparent viscosity of granular flows increases with pressure and decreases with shear rate. The main difference is the shearing stress and rate of shear.
A Kelvin–Voigt material, also called a Voigt material, is the most simple model viscoelastic material showing typical rubbery properties. It is purely elastic on long timescales (slow deformation), but shows additional resistance to fast deformation.
The hyperelastic material is a special case of a Cauchy elastic material. For many materials, linear elastic models do not accurately describe the observed material behaviour. The most common example of this kind of material is rubber, whose stress-strain relationship can be defined as non-linearly elastic, isotropic and incompressible.
In purely viscous materials, there is a phase difference between stress and strain, where strain lags stress by a 90 degree (/ radian) phase lag. Viscoelastic materials exhibit behavior somewhere in between that of purely viscous and purely elastic materials, exhibiting some phase lag in strain. [3]
Viscoelastic materials have the properties of both viscous and elastic materials and can be modeled by combining elements that represent these characteristics. One viscoelastic model, called the Maxwell model predicts behavior akin to a spring (elastic element) being in series with a dashpot (viscous element), while the Voigt model places these ...
Figure 1. Elements used in one-dimensional models of viscoplastic materials. Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behavior of solids. Rate-dependence in this context means that the deformation of the material depends on the rate at which loads are applied. [1]