enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Total order - Wikipedia

    en.wikipedia.org/wiki/Total_order

    A strict total order on a set is a strict partial order on in which any two distinct elements are comparable. That is, a strict total order is a binary relation < {\displaystyle <} on some set X {\displaystyle X} , which satisfies the following for all a , b {\displaystyle a,b} and c {\displaystyle c} in X {\displaystyle X} :

  3. List of order structures in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_order_structures...

    Total orders, orderings that specify, for every two distinct elements, which one is less than the other; Weak orders, generalizations of total orders allowing ties (represented either as equivalences or, in strict weak orders, as transitive incomparabilities) Well-orders, total orders in which every non-empty subset has a least element

  4. Weak ordering - Wikipedia

    en.wikipedia.org/wiki/Weak_ordering

    A strict weak order that is trichotomous is called a strict total order. [14] The total preorder which is the inverse of its complement is in this case a total order . For a strict weak order < {\displaystyle \,<\,} another associated reflexive relation is its reflexive closure , a (non-strict) partial order ≤ . {\displaystyle \,\leq .}

  5. Glossary of order theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_order_theory

    Total order. A total order T is a partial order in which, for each x and y in T, we have x ≤ y or y ≤ x. Total orders are also called linear orders or chains. Total relation. Synonym for Connected relation. Transitive relation. A relation R on a set X is transitive, if x R y and y R z imply x R z, for all elements x, y, z in X. Transitive ...

  6. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    The disjoint union of two posets is another typical example of order construction, where the order is just the (disjoint) union of the original orders. Every partial order ≤ gives rise to a so-called strict order <, by defining a < b if a ≤ b and not b ≤ a. This transformation can be inverted by setting a ≤ b if a < b or a = b. The two ...

  7. Well-ordering theorem - Wikipedia

    en.wikipedia.org/wiki/Well-ordering_theorem

    A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are equivalent to the axiom of choice (often called AC, see also Axiom of choice § Equivalents).

  8. Sorting - Wikipedia

    en.wikipedia.org/wiki/Sorting

    For the sorting to be unique, these two are restricted to a total order and a strict total order, respectively. Sorting n-tuples (depending on context also called e.g. records consisting of fields) can be done based on one or more of its components. More generally objects can be sorted based on a property.

  9. Maximal and minimal elements - Wikipedia

    en.wikipedia.org/wiki/Maximal_and_minimal_elements

    When the restriction of to is a total order (= {,,} in the topmost picture is an example), then the notions of maximal element and greatest element coincide. [ proof 5 ] This is not a necessary condition: whenever S {\displaystyle S} has a greatest element, the notions coincide, too, as stated above.