Ad
related to: x rays in radiation
Search results
Results from the WOW.Com Content Network
Natural color X-ray photogram of a wine scene. Note the edges of hollow cylinders as compared to the solid candle. William Coolidge explains medical imaging and X-rays.. An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays.
However, X-ray science has special terminology to describe the transition of electrons from upper to lower energy levels: traditional Siegbahn notation, or alternatively, simplified X-ray notation. In Siegbahn notation, when an electron falls from the L shell to the K shell, the X-ray radiation emitted is called a K-alpha (Kα) emission
At 38 nanometers wavelength for electromagnetic radiation, 33 eV is close to the energy at the conventional 10 nm wavelength transition between extreme ultraviolet and X-ray radiation, which occurs at about 125 eV. Thus, X-ray radiation is always ionizing, but only extreme-ultraviolet radiation can be considered ionizing under all definitions.
Radiography is an imaging technique using X-rays, gamma rays, or similar ionizing radiation and non-ionizing radiation to view the internal form of an object.Applications of radiography include medical ("diagnostic" radiography and "therapeutic radiography") and industrial radiography.
Electromagnetic radiation consists of photons, which can be thought of as energy packets, traveling in the form of a wave. [4] Examples of electromagnetic radiation includes X-rays and gamma rays (see photo "Types of Electromagnetic Radiation"). [4] These types of radiation can easily penetrate the human body because of high energy. [4]
High-energy X-rays or HEX-rays are very hard X-rays, with typical energies of 80–1000 keV (1 MeV), about one order of magnitude higher than conventional X-rays used for X-ray crystallography (and well into gamma-ray energies over 120 keV).
In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. [1] [2] This includes: electromagnetic radiation consisting of photons, such as radio waves, microwaves, infrared, visible light, ultraviolet, x-rays, and gamma radiation (γ)
X-ray detectors collect individual X-rays (photons of X-ray electromagnetic radiation) and count the number of photons collected (intensity), the energy (0.12 to 120 keV) of the photons collected, wavelength (c. 0.008–8 nm), or how fast the photons are detected (counts per hour), to tell us about the object that is emitting them.
Ad
related to: x rays in radiation