Search results
Results from the WOW.Com Content Network
A Z-parameter matrix describes the behaviour of any linear electrical network that can be regarded as a black box with a number of ports.A port in this context is a pair of electrical terminals carrying equal and opposite currents into and out-of the network, and having a particular voltage between them.
The Scattering transfer parameters or T-parameters of a 2-port network are expressed by the T-parameter matrix and are closely related to the corresponding S-parameter matrix. However, unlike S parameters, there is no simple physical means to measure the T parameters in a system, sometimes referred to as Youla waves.
This expression extends to DC by letting tend to 0.. A surge of energy on a finite transmission line will see an impedance of prior to any reflections returning; hence surge impedance is an alternative name for characteristic impedance.
Figure 1: Example two-port network with symbol definitions. Notice the port condition is satisfied: the same current flows into each port as leaves that port.. In electronics, a two-port network (a kind of four-terminal network or quadripole) is an electrical network (i.e. a circuit) or device with two pairs of terminals to connect to external circuits.
In telecommunications, the term attenuation constant, also called attenuation parameter or attenuation coefficient, is the attenuation of an electromagnetic wave propagating through a medium per unit distance from the source. It is the real part of the propagation constant and is measured in nepers per metre.
The Fed’s dot plot is a chart updated quarterly that records each Fed official’s projection for the central bank’s key short-term interest rate, the federal funds rate. The dots reflect what ...
Reciprocity in electrical networks is a property of a circuit that relates voltages and currents at two points. The reciprocity theorem states that the current at one point in a circuit due to a voltage at a second point is the same as the current at the second point due to the same voltage at the first.
For line length of about 240 km parameters are assumed to be lumped (though practically these parameters are always distributed). Therefore, the response of transmission line for a length up to 250 km can be considered linear and hence the equivalent circuit of the line can be approximated to a linear circuit.