enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tennis racket theorem - Wikipedia

    en.wikipedia.org/wiki/Tennis_racket_theorem

    The tennis racket theorem or intermediate axis theorem, is a kinetic phenomenon of classical mechanics which describes the movement of a rigid body with three distinct principal moments of inertia. It has also been dubbed the Dzhanibekov effect , after Soviet cosmonaut Vladimir Dzhanibekov , who noticed one of the theorem's logical consequences ...

  3. Vladimir Dzhanibekov - Wikipedia

    en.wikipedia.org/wiki/Vladimir_Dzhanibekov

    In 1985 he demonstrated stable and unstable rotation of a T-handle nut from the orbit, subsequently named the Dzhanibekov effect. The effect had been long known from the tennis racket theorem, which says that rotation about an object's intermediate principal axis is unstable while in free fall. In 1985 he was promoted to the rank of major ...

  4. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    This is known as the squeeze theorem. [ 1 ] [ 2 ] This applies even in the cases that f ( x ) and g ( x ) take on different values at c , or are discontinuous at c . Polynomials and functions of the form x a

  5. File:Dzhanibekov effect.ogv - Wikipedia

    en.wikipedia.org/wiki/File:Dzhanibekov_effect.ogv

    The following other wikis use this file: Usage on ar.wikipedia.org مبرهنة مضرب التنس; Usage on de.wikipedia.org Dschanibekow-Effekt

  6. Hockey-stick identity - Wikipedia

    en.wikipedia.org/wiki/Hockey-stick_identity

    Download as PDF; Printable version; In other projects ... Fermat's identity or Chu's Theorem, [3] ... by the partial sum formula for geometric series, ...

  7. Surface equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Surface_equivalence_principle

    The principle yields an equivalent problem for a radiation problem by introducing an imaginary closed surface and fictitious surface current densities.It is an extension of Huygens–Fresnel principle, which describes each point on a wavefront as a spherical wave source.

  8. Layer cake representation - Wikipedia

    en.wikipedia.org/wiki/Layer_cake_representation

    Layer cake representation. In mathematics, the layer cake representation of a non-negative, real-valued measurable function defined on a measure space (,,) is the formula = (,) (),

  9. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    The first Frenet-Serret formula holds by the definition of the normal N and the curvature κ, and the third Frenet-Serret formula holds by the definition of the torsion τ. Thus what is needed is to show the second Frenet-Serret formula. Since T, N, B are orthogonal unit vectors with B = T × N, one also has T = N × B and N = B × T.