Search results
Results from the WOW.Com Content Network
Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.
[2] [3] Other theoretical concepts that use electron affinity include electronic chemical potential and chemical hardness. Another example, a molecule or atom that has a more positive value of electron affinity than another is often called an electron acceptor and the less positive an electron donor. Together they may undergo charge-transfer ...
For example, in copper 29 Cu, according to the Madelung rule, the 4s subshell (n + l = 4 + 0 = 4) is occupied before the 3d subshell (n + l = 3 + 2 = 5). The rule then predicts the electron configuration 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2, abbreviated [Ar] 3d 9 4s 2 where [Ar] denotes the configuration of argon, the preceding noble gas. However ...
The electron affinity (usually given by the symbol in solid state physics) gives the energy difference between the lower edge of the conduction band and the vacuum level of the semiconductor. The band gap (usually given the symbol E g {\displaystyle E_{\rm {g}}} ) gives the energy difference between the lower edge of the conduction band and the ...
The energy required to remove one or more electrons to make a cation is a sum of successive ionization energies; for example, the energy needed to form Mg 2+ is the ionization energy required to remove the first electron from Mg, plus the ionization energy required to remove the second electron from Mg +. Electron affinity is defined as the ...
where I is the ionization potential and A the electron affinity. This expression implies that the chemical hardness is proportional to the band gap of a chemical system, when a gap exists. The first derivative of the energy with respect to the number of electrons is equal to the chemical potential , μ , of the system,
For example, the electron binding energy for removing a 3p 3/2 electron from the chloride ion is the minimum amount of energy required to remove an electron from the chlorine atom when it has a charge of −1. In this particular example, the electron binding energy has the same magnitude as the electron affinity for the
In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...