Search results
Results from the WOW.Com Content Network
In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...
A theorem of Kronecker states that if α is a nonzero algebraic integer such that α and all of its conjugates in the complex numbers have absolute value at most 1, then α is a root of unity. There are quantitative forms of this, stating more precisely bounds (depending on degree) on the largest absolute value of a conjugate that imply that an ...
Puiseux series were first introduced by Isaac Newton in 1676 [1] and rediscovered by Victor Puiseux in 1850. [2] The definition of a Puiseux series includes that the denominators of the exponents must be bounded. So, by reducing exponents to a common denominator n, a Puiseux series becomes a Laurent series in an n th root of the
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]
As (+) = and (+) + =, the sum and the product of conjugate expressions do not involve the square root anymore. This property is used for removing a square root from a denominator , by multiplying the numerator and the denominator of a fraction by the conjugate of the denominator (see Rationalisation ).
He also proved that if ζ is a reduced quadratic surd and η is its conjugate, then the continued fractions for ζ and for (−1/η) are both purely periodic, and the repeating block in one of those continued fractions is the mirror image of the repeating block in the other.
The 3-adic integers, with selected corresponding characters on their Pontryagin dual group. In number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to (possibly infinite) decimals, but with digits based on a prime number p ...
Likewise, tan 3 π / 16 , tan 7 π / 16 , tan 11 π / 16 , and tan 15 π / 16 satisfy the irreducible polynomial x 4 − 4x 3 − 6x 2 + 4x + 1 = 0, and so are conjugate algebraic integers. This is the equivalent of angles which, when measured in degrees, have rational numbers. [2] Some but not all irrational ...