Search results
Results from the WOW.Com Content Network
Some errors are introduced when the experimenter's desire for a certain result unconsciously influences selection of data (a problem which is possible to avoid in some cases with double-blind protocols). [4] There have also been cases of deliberate scientific misconduct. [5]
These artifacts may be caused by a variety of phenomena such as the underlying physics of the energy-tissue interaction as between ultrasound and air, susceptibility artifacts, data acquisition errors (such as patient motion), or a reconstruction algorithm's inability to represent the anatomy.
In survey-type situations, these errors can be mistakes in the collection of data, including both the incorrect recording of a response and the correct recording of a ...
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
(more unsolved problems in physics) In cosmology , the cosmological constant problem or vacuum catastrophe is the substantial disagreement between the observed values of vacuum energy density (the small value of the cosmological constant ) and the much larger theoretical value of zero-point energy suggested by quantum field theory .
That these codes allow indeed for quantum computations of arbitrary length is the content of the quantum threshold theorem, found by Michael Ben-Or and Dorit Aharonov, which asserts that you can correct for all errors if you concatenate quantum codes such as the CSS codes—i.e. re-encode each logical qubit by the same code again, and so on, on ...
When using approximation equations or algorithms, especially when using finitely many digits to represent real numbers (which in theory have infinitely many digits), one of the goals of numerical analysis is to estimate computation errors. [5] Computation errors, also called numerical errors, include both truncation errors and roundoff errors.
This is in contrast to package decay-induced soft errors, which do not change with location. [5] As chip density increases, Intel expects the errors caused by cosmic rays to increase and become a limiting factor in design. [4] The average rate of cosmic-ray soft errors is inversely proportional to sunspot activity.