Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
These delayed signals cause measurement errors that are different for each type of GPS signal due to its dependency on the wavelength. [4] A variety of techniques, most notably narrow correlator spacing, have been developed to mitigate multipath errors. For long delay multipath, the receiver itself can recognize the wayward signal and discard it.
For example, an experimental uncertainty analysis of an undergraduate physics lab experiment in which a pendulum can estimate the value of the local gravitational acceleration constant g. The relevant equation [1] for an idealized simple pendulum is, approximately,
A Fermi problem (or Fermi question, Fermi quiz), also known as an order-of-magnitude problem, is an estimation problem in physics or engineering education, designed to teach dimensional analysis or approximation of extreme scientific calculations. Fermi problems are usually back-of-the-envelope calculations.
An inverse problem in science is the process of calculating from a set of observations the causal factors that produced them: for example, calculating an image in X-ray computed tomography, source reconstruction in acoustics, or calculating the density of the Earth from measurements of its gravity field. It is called an inverse problem because ...
where = is the reduced Planck constant.. The quintessentially quantum mechanical uncertainty principle comes in many forms other than position–momentum. The energy–time relationship is widely used to relate quantum state lifetime to measured energy widths but its formal derivation is fraught with confusing issues about the nature of time.
The analysis of errors computed using the global positioning system is important for understanding how GPS works, and for knowing what magnitude errors should be expected. The Global Positioning System makes corrections for receiver clock errors and other effects but there are still residual errors which are not corrected.